
Ocean Modelling 149 (2020) 101615

Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

Turbulent mixing of a passive scalar in the ocean mixed layer
Neeraja Bhamidipati a,∗, Andre N. Souza b, Glenn R. Flierl b

a BP Institute for Multiphase Flow, Department of Earth Sciences, University of Cambridge, Madingley Rise, Cambridge, CB3 0EZ, United Kingdom
b Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States

A R T I C L E I N F O

Keywords:
Mixed layer
Eddy flux
Turbulence
Parameterization

A B S T R A C T

We study the 2D turbulent mixing of a passive scalar in the ocean mixed layer. As an example, we examine
a steady-state convective mixed layer in which the boundary conditions are chosen so that the system
reaches a dynamical equilibrium. In this idealized case, we parameterize the horizontally and temporally
averaged fluxes as a functional of the horizontally and temporally averaged property gradients. Here, ⟨𝑤′𝑐′⟩ =
− ∫ d𝑧′(𝑧|𝑧′)𝜕⟨𝑐⟩∕𝜕𝑧′, where (𝑧|𝑧′) is the eddy diffusivity kernel which describes the vertical transport
by eddies at any vertical location 𝑧. The full kernel (𝑧|𝑧′) is computed by adding passive scalars to a
buoyancy-driven flow field in a 2D DNS of the ocean surface layer. This functional form of the eddy diffusivity
highlights both local and non-local effects of the mixing of a passive scalar, and is based on an unapproximated
representation of the idealized physics. This type of formulation can be further extended to other problems in
turbulence concerning the mixing of a passive scalar to determine a parameterization based on an accurate
representation of ocean physics.

1. Introduction

The ocean mixed layer mediates the exchange of mass, momen-
tum and energy between the ocean and the atmosphere (Kantha and
Clayson, 1994). The depth of these layers can range from tens to
thousands of meters and exhibits large seasonal variations depending
on the latitude. The mixing within the surface layer is driven by
a range of factors. In the winter or at night, the mixing is largely
driven by the convection due to radiative heat loss to the atmosphere,
whereas during the summer, the mixing is mainly shear-driven, since
the wind stress at the surface is the primary mixing agent. Although
the surface wind stress acts to stir light water downwards, most of
this energy dissipates rapidly within the top 25 − 30 m of the ocean.
During the summer, increased solar heating of the surface water leads
to more stable density stratification, reducing the penetration of wind-
driven mixing. Wintertime cooling over the ocean always reduces stable
stratification, allowing a deeper penetration of wind-driven turbulence
but also generating plumes that can penetrate to great depths (Kraus
and Turner, 1967). Therefore, regionally, the mixed layer can become
much deeper when convective processes are active (Kara et al., 2003).

From a biological perspective, the ocean mixed layer is nutrient-
poor, and its depth determines the average level of light seen by
phytoplankton. Therefore, the mixing at the base of the ocean mixed
layer is crucial for biological productivity. Since marine biological
net primary production is the first step in the food chain of marine
organisms, its decline could have severe consequences for fish stock
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and fisheries (Kuhlbrodt et al., 2009). Biological productivity is also
important from a climate point of view: carbon fixation by phyto-
plankton constitutes a biological pathway for removing some of the
anthropogenic CO2 introduced into the atmosphere. Therefore primary
production is also of considerable interest to oceanographers because
it contributes significantly to global photosynthesis and ocean carbon
uptake (Riebesell et al., 2007; Takahashi et al., 2009).

Proper parameterization of turbulent mixing in the ocean surface
layer is crucial to simulate dynamics in the ocean interior, air–sea
exchanges, and sea surface temperature correctly. If model parameter-
izations are to describe the upper ocean mixing processes accurately,
they must be strongly physically based. The existing parameterizations
of mixed layer dynamics range from the simple bulk mixed layer
models (Kraus and Turner, 1967; Niiler and Kraus, 1977; Price et al.,
1986) to models including non-local effects of mixing (Large et al.,
1994). The bulk mixed layer model of Kraus–Turner uses an integrated
form of the turbulent kinetic energy (TKE) equation, in which the
balance is between the generation of turbulence by wind driven mixing
and convection, with the work done in overturning the deep stable
stratification (Kraus and Turner, 1967). Although such bulk models
are popular, they might lose distinctive features such as the non-
local transport because of the vertical integrals, and the assumption of
homogenization may breakdown.

Other models require equations for turbulent kinetic energy and
its rate of dissipation to estimate the vertical eddy diffusivity. These
equations come from carrying out Reynolds decomposition on the
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Navier–Stokes equations, into a mean flow and a fluctuating compo-
nent. Since these equations are no longer closed, closure assumptions
are required (Acreman and Jeffery, 2007). Common to several of the
first-order closure schemes is the assumption that the fluxes depend
linearly on the property gradient, with an appropriate constant of
proportionality, which is the eddy diffusivity. Other parameterizations
have represented the eddy diffusivity as a function of the Richardson
number (Pacanowski and Philander, 1981). Mellor and Yamada (1982)
present a second-order turbulent closure model which solves equations
for the turbulent kinetic energy and its product with the turbulent
length scale. This second-order closure comes from an assumption that
the turbulent energy produced by shear and convection is balanced
locally by turbulent dissipation. The K-Profile parameterization (KPP)
scheme represents the turbulent mixing of buoyancy using a diffu-
sion equation which has a vertically varying diffusivity along with a
counter-gradient term which accounts for non-local transport, whereas
the transport of passive tracers is still treated locally (Large et al.,
1994). There have also been significant advancements towards en-
hancement of the KPP scheme, to include the effects of bottom bound-
ary layer (Durski et al., 2004) and Langmuir turbulence (McWilliams
and Sullivan, 2000; Smyth et al., 2002). Non-local effects have also
been incorporated into schemes other than KPP such as the bulk
mixed-layer models (Price et al., 1986), but these are generally ad-hoc.

Recent efforts to parameterize mixing in the ocean boundary layer
include the works of Qiao et al. (2004), McWilliams et al. (2009), Li
and Fox-Kemper (2017), Reichl and Hallberg (2018), and Reichl and
Li (2019). On the other hand, some plume type atmospheric models
include a non-local aspect for the transport of a passive tracer since the
plumes transport the tracer from the level they start from (Romps and
Kuang, 2011; Tan et al., 2018). The work on transilient theory (Stull,
1984; Stull and Kraus, 1987; Stull, 1993) is valuable in describing the
theory and the merits of such an approach to model the non-local
vertical transport by eddies in the upper ocean. The transilient matrix
 describes the vertical transport by eddies, where each column corre-
sponds to an initial height and each row corresponds to a final height:
the element 𝑖𝑗 describes transport from 𝑧𝑗 to 𝑧𝑖. If this matrix can be
diagnosed for a convecting fluid, it can provide valuable information on
the transilient (i.e., non-local) transport by eddies (Romps and Kuang,
2011).

We begin with a general statement of the relationship between the
ensemble mean gradients 𝑖(𝑥, 𝑦, 𝑧, 𝑡) and the ensemble mean fluxes
𝑖(𝑥, 𝑦, 𝑧, 𝑡) of a scalar (where the subscript represents different compo-
nents). The equation for the fluctuations (the deviations from the mean)
is linear and is forced by the advection of the mean gradients by the
fluctuating velocity; therefore the scalar fluctuations and the fluxes are
linear functionals of the mean gradients:

𝑖(𝑥, 𝑦, 𝑧, 𝑡) = −∫ 𝑖𝑗 (𝑥, 𝑦, 𝑧, 𝑡|𝑥′, 𝑦′, 𝑧′, 𝑡′)𝑗 (𝑥′, 𝑦′, 𝑧′, 𝑡′) d𝑥′ d𝑦′ d𝑧′ d𝑡′

(1)

where the summation convention is used for repeated indices.
In this paper, we focus on estimating this exact formulation of the

flux as a functional of the property gradient, using high resolution
simulations to determine the form of the functional. For the mixed
layer, we can reduce the order of the kernel by assuming that the
statistics have no horizontal variation so that it becomes (𝑧, 𝑡|𝑧′, 𝑡′).
Finally, to further simplify the computation and the portrayal of the
kernel, we will deal with the statistically steady state. This will be
appropriate if the time-scales for the changes in the tracer distribution
or the other mixed layer properties are slow enough. Furthermore, we
use temporal and spatial averages instead of ensemble averages. In this
idealized case, the appropriate eddy diffusivity kernel (𝑧|𝑧′) describes
the vertical transport by eddies at any vertical location 𝑧 arising from
gradients at 𝑧′. We emphasize that the work here does not propose a
new parameterization; to do that, many of the effects such as winds
and time-dependence would need to be brought back in and examined

carefully. Instead, our study provides insight into how fluxes are related
to gradients, gives an example of such a calculation, and, we hope,
suggests approaches to parameterization.

For simplicity, we restrict our focus to convection-driven mixing
using an idealized 2D surface layer of the ocean, where a balance
of fluxes persists long enough for the system to reach a dynamical
equilibrium. Although 3D effects appear soon after the onset of convec-
tive instability, the 2D problem can describe both the instability and
some of the effects of non-linearity. For example, Taylor and Ferrari
(2010) find good agreement of the mean profiles and turbulent features
between 2D and 3D large eddy simulations of slantwise convection with
a horizontal buoyancy gradient, forced by either surface wind stress or
surface buoyancy flux. Furthermore, while 2D simulations do not work
well for fingering convection in the limit of low Prandtl number Garaud
and Brummell (2015), Schmalzl et al. (2004) find that, for higher values
of the Prandtl number (𝑃𝑟 > 1), the flow structure and global quantities
(e.g., Nusselt number and Reynolds number) exhibit similar behavior
in 2D and 3D simulations. In the context of atmospheric boundary layer
convection, Moeng et al. (2004) have found that certain properties,
such as the vertical distribution of heat flux, are not sensitive to the
choice of 2D versus 3D, although the same may not hold true when
there is a mean shear. The authors argue that 2D models can be
themselves thought of as a parameterization of 3D physics.

In Section 2, we discuss the basic equations governing the 2D system
and derive an equation for the mixed layer depth (MLD), based on a
balance between the imposed flux es. We also present the results from
our 2D DNS to describe the evolution of buoyancy in the domain. In
Section 3, we use passive tracers to describe the turbulent mixing in
terms of an eddy diffusivity kernel, and propose a method to compute
the kernel based on a proper representation of the physics. Although the
analysis in this section corresponds to a 2D model of ocean turbulence,
the framework described here applies equally well to a fully turbulent
3D case. Finally, in Section 4, we discuss the relevance of this study
and indicate further directions for future work.

2. Governing equations

We begin with the two-dimensional Boussinesq equations.

𝛁 ⋅ 𝐮 = 0 (2a)
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ 𝛁)𝐮 = −
𝛁𝑝
𝜌𝑜

+ 𝜈∇2𝐮 + 𝑏𝑧̂ (2b)

𝜕𝑏
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑏 = 𝜅∇2𝑏 + d
d𝑧

(𝑄(𝑧)) (2c)

where 𝐮 = (𝑢,𝑤) is the fluid velocity, 𝑝 is the pressure, 𝜌𝑜 is the mean
density, 𝜈 is kinematic viscosity, and 𝜅 is thermal diffusivity. We assume
that the fluid buoyancy 𝑏 is a function only of temperature 𝑇 , so that
𝑏 = 𝛼𝑔𝑇 , where 𝛼 is the coefficient of thermal expansion and 𝑔 is
acceleration due to gravity. The equation governing buoyancy has an
added internal heating term to account for penetrative solar radiation.
This flux is represented as 𝑄(𝑧) = 𝑄𝑜𝑒𝑧∕𝑙, where 𝑄𝑜 = 𝐻𝑜(𝛼𝑔)∕(𝜌𝑜𝐶𝑝), 𝐻𝑜
is the surface heat flux, 𝐶𝑝 is the specific heat capacity of the fluid, 𝑙 is
the vertical decay scale, and 𝑧 is the vertical space coordinate, negative
downward with origin at sea level. The attenuation length 𝑙 for solar
radiation of short wavelength is approximately 20 m, whereas longer
wavelengths get absorbed over a much shallower depth, approximately
0.5 m (Paulson and Simpson, 1977). Therefore, we use 𝑙 = 20 m. In
general, the surface heat flux varies both diurnally and seasonally, but
here we restrict our attention to a constant surface heat flux to study
the statistical steady state.

We assume that the top and bottom boundaries are free-slip and im-
permeable. The buoyancy flux at the bottom boundary is that necessary
to maintain the Brunt–Väisälä frequency of the thermocline.

𝑤 = 0, 𝜕𝑢
𝜕𝑧

= 0, 𝜅 𝜕𝑏
𝜕𝑧

= 𝜅𝑁2 at 𝑧 = −𝐻

𝑤 = 0, 𝜕𝑢
𝜕𝑧

= 0 at 𝑧 = 0

⎫

⎪

⎬

⎪

⎭

(3)

2
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Fig. 1. The panels show the evolution of the deviation of buoyancy field, 𝑏(𝑥, 𝑧, 𝑡) −𝛷𝑧, at four times, 𝑡 = 0.03, 0.04, 0.49, 1.10 for 𝐹∕𝛷 = 20.

with 𝐻 ≫ 𝑙. We further assume that a radiative cooling at the
surface is specified so that the net flux in the system is zero, and the
system reaches a statistical steady state. This simplification allows us
to estimate a kernel that is stationary in time and only depends on the
stationary statistics of the flow field. Furthermore, although we use this
specific scenario in which a quasi-steady state approximation applies
because of a net balance of fluxes, we emphasize again that subsequent
approach to represent mixing in the surface layer as a functional of
the mean gradients can be extended to a more general time-varying
problem, where the eddy flux kernel is given as (𝑧, 𝑡|𝑧′, 𝑡′) (cf. Eq. (1)).

Taking the horizontal average of Eq. (2c), where ∗ = 𝐿−1 ∫ 𝐿
0 ∗

d𝑥 denotes horizontal average, we obtain the boundary condition for
buoyancy at 𝑧 = 0, i.e., the radiative cooling at the surface,

𝜕𝑏
𝜕𝑡

= − 𝜕
𝜕𝑧

(

𝑤′𝑏′ −𝑄𝑜𝑒
𝑧∕𝑙 − 𝜅 𝜕𝑏

𝜕𝑧

)

(4)

where 𝑏′(𝑥, 𝑧, 𝑡) is the buoyancy perturbation (𝑏 = 𝑏(𝑧, 𝑡) + 𝑏′(𝑥, 𝑧, 𝑡)).
Assuming a quasi-steady evolution so that 𝜕𝑏∕𝜕𝑡 = 0, and integrating
over the depth of the domain from 𝑧 = −𝐻 to 𝑧 = 0 gives the boundary
condition for buoyancy at 𝑧 = 0,

𝜅 𝜕𝑏
𝜕𝑧

|

|

|

|

|𝑧=0
= 𝜅𝑁2 −𝑄𝑜(1 − 𝑒−𝐻∕𝑙) (5)

The system is in dynamical equilibrium, and so we expect it to reach
a statistical steady state. If 𝜕𝑏∕𝜕𝑧 < 0 at the surface, we have colder fluid
overlying hotter fluid. Therefore, 𝑄𝑜∕𝜅𝑁2 > 1 is a necessary condition
for convection to occur, but it is not a sufficient condition since the
fluid also needs to overcome viscous forces, as defined by the Rayleigh
number. We non-dimensionalize the problem by defining the following
dimensionless variables.1

𝑡 = 𝑡𝜅
𝑙2
, 𝐮̃ = 𝐮𝑙

𝜅
, 𝑏̃ = 𝑏𝑙3

𝜅2
, 𝑝̃ =

𝑝𝜌𝑜𝑙2

𝜅2
(6)

The dimensionless equations are (dropping the tildes)

𝛁 ⋅ 𝐮 = 0 (7a)
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ 𝛁)𝐮 = −𝛁𝑝 + Pr∇2𝐮 + 𝑏𝑧̂ (7b)
𝜕𝑏
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑏 = ∇2𝑏 + 𝐹𝑒𝑧 (7c)

where the following non-dimensional parameters are defined

𝐹 = Pr Ra𝑓 =
𝑄𝑜𝑙4

𝜅3
, Pr = 𝜈

𝜅
, Ra𝑓 =

𝑄𝑜𝑙4

𝜈𝜅2
, 𝛷 = 𝑁2𝑙4

𝜅2
(8)

1 Note that our particular choice of non-dimensionalization is arbi-
trary since we do not make any approximations on the basis of the
non-dimensionalization.

Table 1
Values of dimensionless parameters used in simulations, where ℎ is the MLD.
𝐿𝑥 𝐿𝑧 𝑃𝑟 𝐹 𝛷 (𝑁𝑥 , 𝑁𝑧) ℎ = ln 𝐹

𝛷

4 16 10 8 × 106 8 × 105 (128,512) 2.302
4 16 10 1.6 × 107 8 × 105 (128,512) 2.996
4 16 10 2.4 × 107 8 × 105 (128,512) 3.401
4 16 10 3.2 × 107 8 × 105 (128,512) 3.689

where Pr is the Prandtl number and Ra𝑓 is the flux Rayleigh number.
The dimensionless boundary conditions are now given by,

𝑤 = 0, 𝜕𝑢
𝜕𝑧

= 0, 𝜕𝑏
𝜕𝑧

= 𝛷 at 𝑧 = −𝐿𝑧

𝑤 = 0, 𝜕𝑢
𝜕𝑧

= 0, 𝜕𝑏
𝜕𝑧

= 𝛷 − 𝐹 (1 − 𝑒−𝐿𝑧 ) at 𝑧 = 0

⎫

⎪

⎬

⎪

⎭

(9)

where 𝐿𝑧 = 𝐻∕𝑙 is the dimensionless depth of the domain. The domain
extends from 0 to 𝐿𝑥 in the horizontal direction. We assume zero base
flow so that the fluid velocity is given by the perturbation velocity 𝐮′
(𝐮 = 𝟎 + 𝐮′, where 𝐮′ = (𝑢′, 𝑤′)).

We solve Eqs. (7)(a–c) using the Dedalus pseudo-spectral code
(Burns et al., 2019). We discretize the domain using 𝑁𝑥 Fourier modes
in the horizontal direction and 𝑁𝑧 Chebyshev modes in the vertical
direction, so that the smallest length scales in the vertical are (10)
mm and the resolution at the base of the mixed layer is (100) cm for
our chosen parameter values. For time-stepping, we use a two-stage
second-order Runge–Kutta method, where the linear terms are treated
implicitly, and non-linear terms are treated explicitly. The time-step
size is set by a Courant–Friedrichs–Lewy condition with prefactor 0.5.
We choose a sufficiently large domain depth in order to mitigate the
effects of internal gravity waves, generated by turbulent plumes hitting
the base of the mixed layer, reflecting off of the bottom boundary.
Table 1 shows the range of parameter values used in the simulations.

We initialize the problem by specifying a linear buoyancy field
𝑏 = 𝛷𝑧, and adding a small perturbation. Because of the surface cooling,
the perturbation to buoyancy field produces horizontal buoyancy gra-
dients which, in turn, begin to produce vorticity. The flows will further
lift the light fluid and draw the heavier fluid down; the layer tries to
overturn. Fig. 1 shows the evolution of the deviation of buoyancy field,
𝑏−𝛷𝑧, in the domain. In Fig. 1(a)–(d), the four panels show convective
plumes descending from the surface, and generating dipolar vortices
which increase the downward speed. Note the internal waves, gener-
ated as the plume hits the stratified base of the convective region. The
plumes drive the turbulent mixing of the linear buoyancy field forming
a fairly homogeneous region – a mixed layer – which deepens over
time. Fig. 2(a) shows the time-evolution of the horizontally averaged
buoyancy field 𝑏 in the domain, starting with an initially linear profile.
The depth of this mixed region initially grows as

√

𝑡 as expected of
penetrative convection (Van Roekel et al., 2018), but eventually settles
to a constant value (Fig. 2(b)).

We can estimate the MLD, ℎ, using convective adjustment ideas;
however, the naive approach of adjusting the diffusive profile that

3
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Fig. 2. (a) Horizontally averaged buoyancy 𝑏 plotted at various times as represented by the different colors, starting with a linear profile (black line) at 𝑡 = 0. (b) The variation
of MLD ℎ versus time 𝑡. The horizontal line represents ℎ = ln(𝐹∕𝛷) and the blue curve represents ℎ ∼

√

𝑡. Here, the ratio of the penetrating shortwave heat flux to the diffusive
heat flux in the deep thermocline is 𝐹∕𝛷 = 20.

matches the boundary condition ends up with non-zero heat flux di-
vergence. Instead, we can solve the initial value problem starting
with the constant stratification and turning on the radiative heat flux
in the interior and boundary conditions, with convective adjustment
occurring whenever 𝜕𝑏∕𝜕𝑧 < 0. However, the end state can be found by
setting 𝜕𝑏∕𝜕𝑡 = 0 in the non-dimensional form of Eq. (4) and integrating
up from the bottom to find

𝑤′𝑏′ − 𝐹𝑒𝑧 − 𝜕𝑏
𝜕𝑧

= −𝛷 (10)

(neglecting the radiative flux at the bottom of the domain, i.e., 𝑒−𝐻∕𝑙 ≈
0 for 𝐻 ≫ 𝑙). When 𝐹𝑒−ℎ = 𝛷, the flux balance in the water below
the mixed layer will be achieved for 𝜕𝑏∕𝜕𝑧 = 0 at 𝑧 = −ℎ. In the
convecting layer, we must also have 𝑤′𝑏′ − 𝜕𝑏∕𝜕𝑧 = 0 at that depth.
This is consistent with the mixed layer buoyancy being constant and
the eddy flux vanishing at the base of the mixed layer. Thus we settle
to a constant flux state when

ℎ = ln

(

𝐹
𝛷

)

(11)

so that the mixed layer descends to the depth where the gradient of
𝑏 in the diffusive solution changes sign.2 Overshooting plumes may
lead to some mixing below this depth resulting in a reversal in sign
of the buoyancy flux; however, that is weak in the experiments since
the mixed layer depth is comparable to the attenuation length for solar
radiation. Choosing the base of the mixed layer to be where 𝑤′𝑏′ = 0
still gives the value given by Eq. (11) since the gradient of 𝑏 is nearly
zero at 𝑧 = −ℎ (see Fig. 2(a)). Near the surface, the eddy flux 𝑤′𝑏′
vanishes so that the balance is between the diffusive flux and the solar
heating. Correspondingly, the horizontally averaged buoyancy profile
shows a negative gradient close to the surface. In contrast, within the
mixed layer, the vertical convective flux nearly balances the heating
throughout the mixed layer.

Henceforth, we describe the mixed layer depth (MLD) using the non-
dimensional parameter, 𝐹∕𝛷, which is the ratio of the penetrating heat
flux to the diffusive heat flux in the deep thermocline (see Table 1).

3. The eddy diffusivity kernel

3.1. Mixing of a passive scalar

Eq. (7c) is analogous to an advection–diffusion equation for a
passive scalar given by
𝜕𝑐
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑐 = ∇2𝑐 + d
d𝑧

(𝑓 (𝑧)) (12)

2 From Eq. (4), the deepening effectively halts and we reach a steady state
when the buoyancy flux from the convective plumes can balance the heat
fluxes.

where 𝑐(𝑥, 𝑧, 𝑡) is the concentration of tracer, and 𝑓 (𝑧) is a forcing
function or source term for the tracer. Additionally, we define the
boundary conditions for the tracer,
𝜕𝑐
𝜕𝑧

= 0 at 𝑧 = 0,−𝐿𝑧 (13)

Taking a horizontal average of Eq. (12) and using the continuity
equation,

𝜕𝑐
𝜕𝑡

+ 𝜕
𝜕𝑧

𝑤′𝑐′ = 𝜕2𝑐
𝜕𝑧2

+ d
d𝑧

(𝑓 (𝑧)) (14)

Splitting the concentration into a horizontally averaged part and a
fluctuating part (𝑐 = 𝑐(𝑧, 𝑡)+𝑐′(𝑥, 𝑧, 𝑡)) and substituting this into Eq. (12)
we obtain (after subtraction of Eq. (14))
(

𝜕
𝜕𝑡

+ 𝐮.𝛁 − ∇2

)

𝑐′ − 𝜕
𝜕𝑧

𝑤′𝑐′ = −𝑤′ 𝜕𝑐
𝜕𝑧

(15)

The integro-differential operator on the left-hand side is linear if
we have a specified flow field 𝐮, so we can easily show that 𝑐′ and the
eddy flux 𝑤′𝑐′ will be a linear functionals of 𝜕𝑐∕𝜕𝑧. This implies that
the horizontally and temporally averaged fluxes are a functional of the
horizontally and temporally averaged gradients,

⟨𝑤′𝑐′⟩ = −∫ (𝑧|𝑧′)
𝜕⟨𝑐⟩(𝑧′)
𝜕𝑧′

d𝑧′ (16)

with ⟨∗⟩ = lim𝜏→∞ 𝜏−1 ∫ 𝜏
0 ∗ d𝑡 (see Appendix A).

In the discrete form used for the numerics, Eq. (16) can be written
for a particular forcing function 𝑓𝑘 as

⟨𝑤′𝑐′⟩𝑖𝑘 = −(𝑧𝑖|𝑧𝑗 )
𝜕⟨𝑐⟩𝑗
𝜕𝑧′𝑘

𝛥𝑧𝑗 = −𝑖𝑗
𝜕⟨𝑐⟩𝑗
𝜕𝑧′𝑘

𝛥𝑧𝑗 (17)

with the appropriate summation convention; the goal is to find the
matrix 𝑖𝑗 . We solve Eq. (12) from zero initial conditions, holding
𝑓 = 𝑓1(𝑧) fixed, and compute to a statistical steady state giving one pair
of ⟨𝑤′𝑐′⟩𝑖,1 and ⟨𝑐𝑧⟩𝑖,1 vectors. We repeat the experiment 𝑛 times, using 𝑛
passive tracers to reach 𝑛 linearly independent statistically steady states
(see Appendix B).

Collecting the experiments into 𝑚 × 𝑛 matrices, with 𝑚 = 512 being
the number of modes used to discretize the domain in 𝑧 and 𝑛 being
the number of tracers, gives  ≡ ⟨𝑤′𝑐′⟩𝑖𝑘 and  ≡ 𝛥𝑧𝑗

(

𝜕⟨𝑐⟩𝑗∕𝜕𝑧𝑘
)

. The
eddy diffusivity kernel  can be estimated using a least-squares fit of
the discrete data as  = − (𝑇 )−1𝑇 .

Fig. 3(a), (b) show the fluxes and gradients of the passive scalar for
𝑛 = 1, 2, 3, 4, 5. Fig. 3(c) shows the convergence of the kernel with 𝑛 as
we add more tracers to compute the fluxes and gradients. We choose
𝑛 = 128 tracers since the results do not vary significantly as we add
more tracers (Fig. 3(c)).

Fig. 4(a) shows the kernel for 𝑛 = 128 tracers and for a given ratio
of the penetrating shortwave heat flux to the diffusive heat flux in the
deep thermocline (𝐹∕𝛷 = 10). In this figure, the horizontal axis gives
the center of a delta function forcing for an arbitrary function 𝑓 (𝑧)
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Fig. 3. (a) and (b) show the horizontally averaged eddy fluxes and gradients of tracer
concentration corresponding to 𝑓𝑛(𝑧) where 𝑛 = 1, 2, 3, 4, 5. (c) Convergence of the kernel
(𝑧|𝑧′) with 𝑛 in terms of the maximum eigenvalue (multiplied by 100 for scale, green
curve), sum of the absolute values of (𝑧|𝑧′) (red curve), and the sum of the squares
of (𝑧|𝑧′) (blue curve). The vertical line represents 𝑛 = 128. Here, the ratio of the
penetrating shortwave heat flux to the diffusive heat flux in the deep thermocline is
𝐹∕𝛷 = 10.

Fig. 4. (a) (𝑧|𝑧′). (b) log10 |(𝑧|𝑧′)|. Here, the ratio of the penetrating shortwave heat
flux to the diffusive heat flux in the deep thermocline is 𝐹∕𝛷 = 10, and the kernel is
computed using 𝑛 = 128 tracers.

represented as the sum of delta functions, and the vertical axis gives the
response, with the diagonal elements (going from lower-left to upper-
right) representing the local contributions. Fig. 4(a) illustrates that the
mixing is strongest within the mixed layer, and the large off-diagonal
elements illustrate that both local and non-local effects of mixing are
significant within the convective region. Fig. 4(b) shows the very weak
eddy flux associated with the internal gravity waves in the region below
the mixed layer.

Fig. 5 shows the kernel for four different values of the mixed layer
depth obtained by varying the non-dimensional parameter 𝐹∕𝛷. The
local effects of mixing can be seen from the diagonal elements of
(𝑧|𝑧′); this is shown in Fig. 6(a) where the vertical axis has been non-
dimensionalized by MLD, ℎ = ln(𝐹∕𝛷). The figure illustrates that the
eddy diffusivity decays rapidly in the region outside the mixed layer, for
|𝑧∕ℎ| > 1. The non-local effects of mixing can be interpreted by looking
at a horizontal slice in Fig. 5; this is shown in Fig. 6(b) for a location in
the middle of the mixed layer. The figure shows the contributions from

Fig. 5. (a)–(d) show the kernel (𝑧∕ℎ|𝑧′∕ℎ) for four different values of MLD, ℎ =
ln(𝐹∕𝛷), obtained by varying the ratio of the penetrating shortwave heat flux to the
diffusive heat flux in the deep thermocline, where 𝐹∕𝛷 = 10, 20, 30, 40 respectively.

Fig. 6. (a) The diagonal elements of the kernel, showing the local effect of the mixing,
plotted against 𝑧∕ℎ, where ℎ is the MLD, and (b) a horizontal slice of (𝑧∕ℎ|𝑧′∕ℎ) in
the middle of the mixed layer at 𝑧∕ℎ = −0.5 illustrating the non-local effects of mixing
for four different values of MLD. In each case, the MLD is defined as the ratio of the
penetrating shortwave heat flux to the diffusive heat flux in the deep thermocline,
ℎ = ln(𝐹∕𝛷).

forcing at different levels to the response in eddy flux at 𝑧∕ℎ = −0.5,
i.e., in the middle of the convecting layer. The figure illustrates that
although the local effects are strongest as indicated by the peak at
𝑧∕ℎ ≈ −0.5 i.e., that the flux at that level has the biggest contributions
from the gradient at that level, more importantly, it highlights that the
flux at that level also has leading-order contributions from gradients
above that level. The stronger contributions from gradients above the
forcing location are due to the convective plumes descending from
the surface which have large momentum. However, we observe weak
contributions from the gradients below this point due to the upward
plumes having petered out by the time they reach the top.

3.2. Eddy flux of buoyancy

The analysis presented in Section 3.1 is strictly only applicable for
a passive scalar since the fluxes ⟨𝑤′𝑐′⟩ are linear in 𝑐′, whereas ⟨𝑤′𝑏′⟩
is non-linear since 𝑤′ is a function of the buoyancy 𝑏. However, we
can compare the eddy flux ⟨𝑤′𝑏′⟩ obtained from the experiments to an
estimate using the kernel (𝑧|𝑧′) and the diagnosed gradients 𝜕⟨𝑏⟩∕𝜕𝑧.
A comparison between the two fluxes is shown in Fig. 7(a) for four
values of MLD.
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Fig. 7. (a) Comparison of the eddy fluxes ⟨𝑤′𝑏′⟩ (solid curve) with the estimate from
the kernel − ∫ d𝑧′(𝑧|𝑧′)𝜕𝑏∕𝜕𝑧 (dashed curve) for four different MLD. (b) An estimate
of the flux using the appropriate local diffusivity (𝑧) four different values of MLD. In
each case, the MLD is defined as the ratio of the penetrating shortwave heat flux to
the diffusive heat flux in the deep thermocline, ℎ = ln(𝐹∕𝛷).

It is worth noting that the flow is generated by the buoyancy 𝑏
and that the kernel  is dependent on statistics of the flow field.
While Fig. 7(a) illustrates that the estimate of the eddy flux using the
kernel gives a consistent representation of the buoyancy fluxes, the
same would not hold true if a buoyancy anomaly was created by a
different active scalar affecting the flow field since this is not taken
into account in estimating . Nevertheless, this calculation does indeed
show that the kernel is in fact consistent with the fluxes of buoyancy.
Additionally, it is also worth noting that although the fluxes do decay
rapidly outside the convective region, for |𝑧∕ℎ| > 1, the fluxes are non-
linear and we do not expect a self-similar solution applicable to all
examples of convective mixing. Indeed, we see that the kernel is not
similar in 𝑧∕ℎ even for a passive scalar (Fig. 6).

We further investigate the importance of non-local effects by defin-
ing an effective local diffusivity (𝑧),

(𝑧|𝑧′) = (𝑧)𝛿(𝑧 − 𝑧′) ⟹ (𝑧) = ∫ (𝑧|𝑧′)𝑑𝑧′ (18)

The estimates of the flux using the appropriate local diffusivity is
shown in Fig. 7(b), which illustrates the significance of the non-local
terms in describing the transport both qualitatively and quantitatively.

4. Conclusions and future work

The mixing of a passive tracer in the surface mixed layer of the
ocean is given by a non-local formulation of the eddy flux in terms of
the mean gradient, ⟨𝑤′𝑐′⟩ = − ∫ d𝑧′(𝑧|𝑧′)𝜕⟨𝑐⟩∕𝜕𝑧′, where (𝑧|𝑧′) is the
eddy diffusivity kernel. Although several non-local parameterizations
have been defined in literature, the analysis presented in this paper
does not use any closure assumptions, and therefore the functional
form of eddy diffusivity gives an unapproximated representation of the
chosen physics. We demonstrate that the eddy flux can be expressed
as a functional of the gradient, and compute the full eddy diffusivity
kernel by resolving the small scales.

We consider an idealized 2D convection-driven mixed layer dy-
namics and give an estimate for MLD as given by a balance between
the surface fluxes and the buoyancy flux of the thermocline; this
analysis is therefore directly applicable to situations where convection
is the dominant process in causing mixed layer deepening. To further
illustrate that this analysis is equally applicable to a 3D case, we have
looked at an example of the balanced state in three dimensions and
find that the structure of the gradients and fluxes of both buoyancy
and passive tracer are very similar to the 2D DNS (see Fig. 8).

The mixed layer deepens as the surface fluxes are increased relative
to the buoyancy fluxes at the thermocline, in accordance with the

Fig. 8. Comparison of the horizontally and temporally averaged fluxes and gradients
of buoyancy and passive tracer in 2D and 3D simulations with the same boundary
conditions. The 3D simulations are done using a finite volume code (Ramadhan et al.,
2020) whereas the 2D simulations use a pseudo-spectral code (Burns et al., 2019). In
both sets of simulations, the ratio of the penetrating shortwave heat flux to the diffusive
heat flux in the deep thermocline is 𝐹∕𝛷 = 10, so that the MLD is ℎ = ln(𝐹∕𝛷) ≈ 2.3.
The profiles for the passive tracer are estimated by solving Eq. (12) where 𝑓 (𝑧) is given
by Eq. (B.2) for 𝑛 = 1.

Fig. 9. The time-evolution of a passive tracer added to the flow near the surface, as
given by the 2D DNS, and solution to Eqs. (19a) and (19b). The yellow dotted curves
represent 1 standard deviation from the mean ensemble profile (yellow curve) obtained
by averaging 100 realizations in the 2D DNS. (a) shows the initial profile at 𝑡 = 0 which
is given by Eq. (20) for 𝑑 = 0.25. The ratio of the penetrating shortwave heat flux to
the diffusive heat flux in the deep thermocline is 𝐹∕𝛷 = 10.

theoretical formulation of MLD. At early times, the mixed layer deepens
as square root of time, but eventually settles to a near constant value
given by the location where the fluxes due to solar heating balance the
buoyancy flux of the thermocline.

The kernel describes both the local and non-local effects of mixing,
illustrating that for this flow, the non-local effects are strongest closer
to the surface because of the energy of the convective plumes detaching

6



N. Bhamidipati, A.N. Souza and G.R. Flierl Ocean Modelling 149 (2020) 101615

from the surface. The non-local effects are therefore important in
transporting properties from one side of the boundary layer to the other
as illustrated in Fig. 1. To further understand the mixing of a passive
tracer by the flow, the importance of non-local effects can be illustrated
by adding a tracer near the surface and studying its distribution a short
time later. To do this, we solve

𝜕⟨𝑐⟩
𝜕𝑡

= 𝜕
𝜕𝑧

(

(𝑧)
𝜕⟨𝑐⟩
𝜕𝑧

)

+
𝜕2⟨𝑐⟩
𝜕𝑧2

(19a)

𝜕⟨𝑐⟩
𝜕𝑡

= 𝜕
𝜕𝑧

(

∫ (𝑧|𝑧′)
𝜕⟨𝑐⟩
𝜕𝑧′

d𝑧′
)

+
𝜕2⟨𝑐⟩
𝜕𝑧2

(19b)

which describe the time-evolution of the ensemble-averaged concen-
tration ⟨𝑐⟩(𝑧, 𝑡) as mixed by the diagnosed local diffusivity (𝑧) given
by Eq. (18) and the full kernel (𝑧|𝑧′) respectively. Since the flow is in
a statistically steady state, we would expect that the tracer distribution
given by the solution to both Eqs. (19a) and (19b) would be very similar
at late times. We begin with

⟨𝑐⟩(𝑧, 𝑡 = 0) = 1
2
[

tanh(20(𝑧 + 𝑑)) + 1
]

(20)

The equivalent profiles from the 2D DNS can be obtained by adding
passive tracers to the statistically steady flow, i.e., solving Eq. (12)
with 𝑓 (𝑧) = 0, and with the same initial condition for the tracer
concentration 𝑐(𝑥, 𝑧, 𝑡) (Eq. (20)). We add 100 tracers to the flow
at different times to obtain the ensemble and horizontally averaged
profiles ⟨𝑐⟩(𝑧, 𝑡). This is shown in Fig. 9. As the figure illustrates, the
profiles given by the full kernel better describe the transient evolution
of the tracer at early times. The profiles obtained using (Eq. (19b))
are within 1 standard deviation of the profiles obtained from the
2D DNS, whereas the equivalent profiles from the local diffusivity
(Eq. (19a)) lie outside this range. Although both solutions (Eqs. (19a)
and (19b)) converge rapidly, the figure highlights that the kernel con-
tains information pertaining to the non-locality of the flow that is miss-
ing from a local diffusivity. This non-local behavior might be especially
important for transient processes that occur on short timescales, where
the non-local fluxes could lead to qualitative macroscopic differences
in properties in the ocean mixed layer.

The kernel (𝑧|𝑧′) depends on the statistics of the flow field and is
computed here for advection of a passive scalar by a fully non-linear
turbulent flow field. Within the mixed layer, the kernel is non-local
since plumes transport properties from one level to the other by advec-
tion. The non-local fluxes move the tracer around with an advective
timescale, whereas a purely diffusive description could exhibit a dif-
ferent timescale dependence on mixed layer depth. This non-locality
could be particularly important when the mixed layer is very deep since
stronger convective plumes will tend to transport properties over larger
distances by advection.

One further development would be to study seasonal variations
of MLD by adding a time-varying surface insolation to see if the
quasi-steady approach is adequate in describing time-varying fluxes.
Although our model is missing important processes for the surface
layer of the ocean (e.g. winds), we have established a framework for
parameterizing fluxes using a functional form of eddy diffusivity which
is based on proper representation of the physics for different flow
problems. While the particular example presented here is limited, it
illustrates the basic principle of using a functional approach and points
to a way to define those functionals for other problems in turbulence
concerning the mixing of a passive scalar.
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Appendix A

Let 𝜙′ be the Green’s function for the integro-differential operator
on the left hand side of Eq. (15), so that
(

𝜕
𝜕𝑡

+ 𝐮.𝛁 − ∇2

)

𝜙′(𝐱, 𝑡|𝐱′, 𝑡′) − 𝜕
𝜕𝑧

𝑤′𝜙′ = 𝛿(𝐱 − 𝐱′)𝛿(𝑡 − 𝑡′) (A.1)

Multiplying Eq. (A.1) by −𝑤′(𝐱′, 𝑡′)𝜕𝑐(𝑧′, 𝑡′)∕𝜕𝑧′ and integrating with
respect to 𝐱′ and 𝑡′ shows by comparison with Eq. (15) that

𝑐′(𝐱, 𝑡) = −∫ d𝐱′ d𝑡′ 𝜙′(𝐱, 𝑡|𝐱′, 𝑡′)𝑤′(𝐱′, 𝑡′) 𝜕𝑐(𝑧
′, 𝑡′)

𝜕𝑧′
(A.2)

Multiplying Eq. (A.2) by 𝑤′ and taking a horizontal average gives the
flux 𝑤′𝑐′ which is a function of 𝑧 and 𝑡,

𝑤′𝑐′ = −∫ d𝑧′ d𝑡′
[

∫ d𝑥′ 𝑤′(𝐱, 𝑡)𝜙′(𝐱, 𝑡|𝐱′, 𝑡′)𝑤′(𝐱′, 𝑡′)
]

𝜕𝑐(𝑧′, 𝑡′)
𝜕𝑧′

(A.3)

The term in square brackets is a kernel ̃(𝑧, 𝑡|𝑧′, 𝑡′) for the temporally
evolving, horizontally averaged flux. Since 𝑓 (𝑧) does not depend on
time and the flow is in a statistically steady state, 𝜕𝑐∕𝜕𝑡 is negligible.
Therefore, the temporally and horizontally averaged flux becomes

⟨𝑤′𝑐′⟩ = −∫ d𝑧′
[

∫ d𝑥′ d𝑡′ ⟨𝑤′(𝐱, 𝑡)𝜙′(𝐱, 𝑡|𝐱′, 𝑡′)𝑤′(𝐱, 𝑡)⟩
]

𝜕⟨𝑐⟩(𝑧′)
𝜕𝑧′

(A.4)

with ⟨∗⟩ = lim𝜏→∞ 𝜏−1 ∫ 𝜏
0 ∗ d𝑡. The kernel (𝑧|𝑧′) which maps the

gradients to the fluxes is the term in the square brackets in Eq. (A.4).

⟨𝑤′𝑐′⟩ = −∫ (𝑧|𝑧′)
𝜕⟨𝑐⟩(𝑧′)
𝜕𝑧′

d𝑧′ (A.5)

Ensemble (rather than spatial–temporal) averaging would lead to
the same form after invoking stationarity and horizontal homogeneity,
appropriate to our periodic domain.

Appendix B

To obtain linearly independent data pairs for both ⟨𝑤′𝑐′⟩ and
𝜕⟨𝑐⟩∕𝜕𝑧, we could define the forcing function 𝑓 (𝑧) as

𝑓 (𝑧) ≡ 𝑓𝑘(𝑧) = 𝐹 ×

(

𝑇𝑘+1

(

2𝑧
𝐿𝑧

+1
)

−
(

𝑧
𝐿𝑧

)

[

𝑇𝑘+1(1) − 𝑇𝑘+1(−1)
]

)

(B.1)

where 𝑇𝑘(𝑧) = cos(𝑘 cos−1(𝑧)) are Chebyshev polynomials of first kind.
This definition of 𝑓𝑘(𝑧), which includes the subtraction of a linear term,
ensures that the domain averaged concentration, found by integrating
equation (14) in 𝑧, remains constant in time and the system reaches a
statistical steady state.
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If we define d𝑓 (𝑧)∕d𝑧 in a way that its vertical integral is not zero,
i.e., without subtracting the linear part from 𝑓 (𝑧), then we would
have 𝜕𝑐∕𝜕𝑡 tending to a constant. This, however, would no effect on
the fluxes and gradients of tracer, and they would still converge to
statistically steady values in time. Therefore in our simulations we have
defined 𝑓 (𝑧) as

𝑓 (𝑧) ≡ 𝑓𝑛(𝑧) = 𝐹 ×

[

𝑇𝑛+1

(

2𝑧
𝐿𝑧

+ 1
)

]

(B.2)

in order to estimate the kernel (𝑧|𝑧′) given by Eq. (16).
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