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Abstract. We investigate the convergence behavior of the extended dynamic mode decomposi-
tion for constructing a discretization of the continuity equation associated with the Lorenz equations
using a nonlinear dictionary of over 1,000,000 terms. The primary objective is to analyze the result-
ing operator by varying the number of terms in the dictionary and the timescale. We examine what
happens when the number of terms of the nonlinear dictionary is varied with respect to its ability
to represent the invariant measure, Koopman eigenfunctions, and temporal autocorrelations. The
dictionary comprises piecewise constant functions through a modified bisecting k-means algorithm
and can efficiently scale to higher-dimensional systems.
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1. Introduction. In the absence of deterministic predictability, we are often
relegated to making statistical statements about the system in question. The lack of
predictability can arise due to the intrinsic stochasticity of an underlying equation, the
lack of information on precise initial conditions, uncertainty in model parameters, or
the non-existence of fundamental guiding physical principles to formulate an evolution
equation. In addition to the necessity of a probabilistic perspective in the former
cases, switching to a probabilistic perspective offers insight into known deterministic
equations with precisely known initial conditions, especially in chaotic and ergodic
dynamics.

Our work focuses on applying a modified bisecting k-means algorithm to test the
limits of the extended dynamic mode decomposition in representing spectral proper-
ties of a chaotic dynamical system. We test our methodology on the Lorenz equations
[25] and pose several conceptual questions:

1. What does it mean to approximate the Koopman eigenfunctions of a chaotic
dynamical system in the absence of noise?

2. To what extent does increasing the number of terms of a nonlinear dictionary
“help”?

3. At what timescale(s) should a Koopman operator be constructed?
Concretely, there is an associated Liouville / Fokker-Planck equation to every dynam-
ical system that describes the evolution of a probability density in state space. We
construct a data-driven discretization of this equation by leveraging the time series of
its dynamical evolution through an extended dynamic mode decomposition. We use a
nonlinear dictionary of piecewise constant functions with over 1,000,000 terms to con-
struct a discretization of the Fokker-Planck operator (or, equivalently, the Koopman
operator).

Instead of focusing on the dynamics of an evolution equation, we focus on the
statistics. When the evolution equation is given by a set of n ordinary differential
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equations, this amounts to an evolution of an n-dimensional partial differential equa-
tion. As such, there are many standard methods that can be employed for discretizing
a partial differential equation in a low number (≤ 4) of dimensions; however, we wish
to employ an extended dynamic mode decomposition to extract a discretization from
the dynamics of a time series such as [39, 8, 11]. Traditional methods are applicable
for the stochastic Lorenz equations, [1], but modern methods [32, 30, 23, 15, 12] with
rigorous convergence guarantees [13, 7, 5, 33] are more akin to what will be performed
here. Deep learning methods to learn optimal nonlinear dictionaries for observables
are also beginning to make progress, see [6] and [3].

What we present here is an efficient method for constructing Koopman operators,
[28, 14, 40, 29, 12]. As noted in [34, 35], using a piecewise constant basis for the non-
linear dictionary allows for computational expedience, which we further accelerate by
applying a modified bisecting k-means algorithm. The only limitation of the algorithm
is the availability of sufficient data. Other efficient methods have been constructed in
the past, see [10, 9, 21], but have been limited to structured assumptions that are not
present in this work. All computations performed in the present work was performed
a single cpu core.

Our methodology can be applied to any dynamical system; see [34, 35] for an
example involving the Lorenz equations and the compressible Euler equations on the
sphere, but we focus on the Lorenz equations to directly address challenges associated
with the representation of Koopman operators in a simplified setting. Preliminary
versions of the algorithm here was implemented already for higher-dimensional dy-
namical (128+ dimensional) systems in [16]. Past studies of the Lorenz equation in
the statistical setting include [2] where a direct discretization of the Fokker-Planck
operator of the stochastic Lorenz equations was implemented.

We modify the “bisecting k-means” clustering algorithm, see [37], and apply it
to constructing a discretization the continuity equation associated with the Lorenz
equations. The k-means algorithm, initially introduced in [26], has been extended
and adapted in various ways, including dynamic modeling for hierarchical clustering
[22, 19]. The primary difference with our method is that a splitting criterion is
introduced, and a cluster is only split if an additional auxiliary condition is met.
The result of our chosen criteria is that the partitions have nearly uniform entropy.
Thus, unlike k-means, the number of clusters is not specified apriori but rather a fixed
probability, p, which empirically yields k ≈ 1.5/p clusters for the calculations here.

At the end of applying the method, one has an appropriate “classifier” for a
given dynamical system state, from whence the construction of the Perron-Frobenius
Operator (or its generator) follows, see [34]. We investigate the effect of data sam-
pling frequency and varying the number of clusters (cells) in a partition. We assess
the operator’s convergence in terms of its ability to represent the invariant measure,
Koopman eigenfunctions, and the spectra, drawing on the spectral properties of dy-
namical systems as discussed by [27].

This paper is organized as follows: Section 2 describes the algorithm, Section
3 covers the application of the algorithm to the Lorenz equations, and Section 4
concludes with future directions.

2. Algorithm. We first review the bisecting k-means algorithm as succinctly
stated in [37]:

1. Choose a cluster to split
2. Find two sub-clusters using the basic k-means algorithm (bisect)
3. Repeat step 2 for N times and take the split that produces the clustering
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with the highest overall similarity
4. Repeat 1, 2, 3 until the desired number of clusters is reached.

We make two modifications to this algorithm in order to construct a “classifier” for
new data

1. Introduce a splitting criteria to stop applying k-means to a cell.
2. Apply the algorithm to a subset of the full dataset.

Thus, the modified algorithm is
1. Determine whether or not a cluster should be split according to a chosen

criteria
2. Find sub-clusters using the basic k-means algorithm
3. Repeat steps 1 and 2 until there are no more clusters to split

All computations in the present work use Euclidean distance as the notion of similarity
(where a smaller distance between points is meant to represent states that are more
“similar”) since the operations are performed in the low-dimensional setting.

Unlike k-means, we do not specify the number of clusters, k, a-priori, but instead
specify a maximum number of points that can exist within a cluster. If the number of
points within a cluster exceeds this threshold, we apply k-means again within a given
cluster. Of course, one could specify any criteria in order to determine whether or not
to further split the cluster, but choosing a “maximum number of points within the
cluster” criteria quickly yields a nearly uniform entropy at the cost of an unbalanced
tree, a sacrifice that we are willing to make. This choice can now be tied to our second
modification. In practice we specify “minimum probability” for a cluster, pmin. The
number of data points necessary for all the clusters to be below this threshold is
estimated as Nmin = floor(100/pmin). If Nmin is larger than the number of data
points Ndata we instead set pmin = 100/Ndata. The “maximum points in a cluster”
criteria is then set to Nthreshold = ceil(pminNmin). Thus, when k-means is applied, if
the number of points in a cluster Ncluster is larger than Nthreshold, a splitting criteria
is applied. In principle, one could determine how to split the data with only 100 or
so points within a cluster, but instead, we start with a sufficiently large subset of the
original data to apply the splitting.

The procedure is illustrated in Figure 2.1. On the left tree, we start with a
probability threshold of p = 0.5. After the first split, the two nodes contain 57%
and 43% of the data. The 43% node falls below the 50% threshold; thus, no further
splitting is necessary. On the other hand, 57% ≥ 50% and another level of splitting
occurs. The resulting center nodes divide the 57% probability into two additional
clusters that hold 40% and 17% of the data, respectively. Since both resultant nodes
fall below the 50% threshold, splitting stops, and we are left with three clusters that
contain 40%, 17%, and 43% of the data. Approximately 43% of the time, we only
need to evaluate two similarity (distance in the present case) functions, and 57% of
the time, we need to evaluate four similarity functions, leading to an average of 3.14 ≈
2×0.43+4×0.57 similarity function evaluations on average. This value is suboptimal
for such a low number of clusters, but the efficiency reveals itself when considering the
20% threshold on the right. There are seven leaf nodes, and the worst-case scenario
is eight similarity evaluations which happen 23% of the time. In total, the average
number of similarity evaluations is 5.8 ≈ 8×0.23+4×0.17+6×0.18+4×0.19+6×0.24,
which already shows a benefit over naively evaluating a similarity across seven different
categories.

After one has obtained a classifier with the method, one must perform additional
“similarity evaluations” for new data. The worst-case scenario for the modified bisect-
ing algorithm is 2n similarity evaluations for n + 1 clusters. The best case scenario
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Fig. 2.1. Modified Bisecting K-Means Algorithm for Different Thresholds. The number
on a node represents the probability of finding a data sample within the cluster. At each node, the
threshold criteria is checked to determine whether or not a bisection should be performed. The leaf
nodes are the resulting clusters.

for the algorithm is 2n similarity evaluations for 2n clusters. Of course, there are
minor modifications if one wants to do division according to an arbitrary number of
clusters at each splitting stage (as opposed to the binary splitting considered here).
For example, if we split into m clusters at each node, the worst case scenario is mn
similarity evaluations for (m− 1)(n− 1) +m clusters, and the best case scenario has
mn clusters. If one simply wants to get the most number of clusters for a fixed num-
ber of similarity evaluations, this will depend on the details of splitting distribution;
however, in the case of optimal partitioning at each splitting level the ideal splitting
is m = 3 since if we keep the number of clusters fixed at a constant c, e.g. mn = c,
then minimizing the number of similarity evaluations MN would be the same as min-
imizing g(m) ≡ log(c)m/log(m) for integers m, in which case the optimal number is
m = 3, independent of c.

3. Application: Lorenz Equations. We generate a trajectory of the Lorenz
equations by starting with the initial condition

(x(0), y(0), z(0)) = (1.4237717232359446, 1.778970017190979, 16.738782836244038)

and evolving the equations forward in time with a Runge-Kutta 4 time-stepping
scheme [4], with a timestep size of ∆t = 10−3 for final time T = 105 leading to
Nt = 108 data points. Thus the data matrix is a long rectangular matrix X ∈ RNs×Nt

where Ns = 3. To incorporate symmetries when applying k-means and constructing
operators, we take the same time series and multiply the x and y variables by −1.

We then partition state space by setting a threshold probability of p = 1.4×10−6

and choosing a binary partition at each stage, yielding roughly O(106) cells at the
finest resolution. We then coarse-grain the fine partition according to a probability
threshold down to four cells at the coarsest setting. This way, we can have a consistent
notion of convergence when refining the partition. Figure 2.1 shows a visualization of
the resulting hierarchy of partitions.

The modified bisecting k-means clustering algorithm produces a classifier C :
R3 → N that maps a state s of the Lorenz system to an integer. Upon converting the
three-dimensional numbers R3 into integers, we then use the data-driven construction
outlined in [34, 35] to construct a sparse matrix representation of the infinitesimal
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generator, Q. We also do an analogous calculation for the Perron-Frobenius operator,
which may be viewed as the matrix exponential of the generator (although there are
subtle differences in their data-driven construction, see [34, 35]).

The resulting operators are sparse and we use inverse iteration to compute eigen-
values and eigenvectors [17, 38]. The inverse is calculated iteratively using an incom-
plete LU factorization. We use the Julia library’s default solvers when the matrices
are small (less than 2000× 2000).

The k-means algorithm produces “cell-centers” (or cluster centers) which, when
combined with the zeroth eigenvalue of the generator (eigenvalue one of the Perron-
Frobenius operator), are used to calculate statistical properties; see [34, 35] for details,
which will be outlined here. Each cell-center σ[n] is associated with a cell n, and a
probability pn. The time series is sampled at discrete times tn from the state sss.

A statistic of an observable g is then calculated in two different manners: The first
using the data set which corresponds to a temporal average ⟨g⟩T and the second using
the data-driven approximation to the generator, cell centers σ[i], and probabilities pi,
in symbols ⟨g⟩E :

⟨g⟩T ≡ 1

Nt

Nt∑
n=1

g(sss(tn))(3.1)

RT (g, τ) ≡
1

N ′
t

N ′
t∑

n=1

g(sss(tn + round(τ/∆t)∆t))g(sss(tn))(3.2)

where the round function computes the closest integer and N ′
t = Nt − round(τ/∆t).

The ensemble average equivalents are

⟨g⟩E ≡
∑
n

g(σ[n])pn(3.3)

and

RE(g, τ) ≡
N∑

n=1

g(σ[n])pn

[
N∑

m=1

g(σ[m])[exp(Qτ)]mn

]
.(3.4)

The operator [exp(Qτ)]mn can either be interpreted as the Perron-Frobenius operator
at timescale τ ,

(3.5) pow
(
P(∆τ), round(τ/∆t)

)
,

or the matrix exponential of the generatorQ. See details in [34, 35] for the assumptions
underlying these formulae.

3.1. Results. Applying the algorithm of Section 2 and methodology of Section
3, we create a nonlinear dictionary of over 1,000,000 terms. The modified bisecting
k-means algorithm yields partitions of the form Figure 3.1. As we refine from four
partitions (top left) to the right-adjacent (top middle) panel, we see a factor of two in
the number of cells, increasing from four to eight. A similar increase is found in the
subsequent panels; each cell has roughly the same probability. Here, we only show
eight levels of refinement from a four-cell partition.

We confirm that the scaled entropy, defined as the entropy of the steady-state
distribution of the partition (as given by the 0’th eigenvalue of the generator) divided
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Fig. 3.1. Hierarchical Modified Bisecting K-Means Algorithm on the Lorenz Attractor.
Here, we show nine different levels of refinement of the Lorenz attractor, starting with four cells
(top right) and continually performing bisections based on increasingly small thresholds proceeding
leftward and downward.

by the uniform distribution’s entropy

scaled entropy(p1, ..., pN ) =
−
∑N

j=1 pj log pj

−
∑N

j=1 N
−1 logN−1

(3.6)

are similar in Figure 3.2 for a partition with N cells. The largest value of the scaled
entropy is one; thus, the upper bound is zero when taking the logarithm. Being
nearly uniform is beneficial to the data-driven method since matrix entries require
sufficient samples to estimate exit probabilities and holding times correctly. In other
words, regions with much lower probabilities than others will constitute poorly sam-
pled columns of the resulting linear operator.

We further check the ability of the data-driven method to replicate steady-state
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Fig. 3.2. Scaled Entropy as a Function of Cell Numbers. The dots represent the log of the
scaled entropy, and the red dashed line is the upper bound based on the uniform distribution. The
entropy remains close to ideal as the cell numbers increase.

statistics of the non-zero cumulants in Figures 3.3 and 3.4. In both cases, the al-
gorithm begins to saturate in accuracy for steady-state values at around 105 cells,
perhaps due to insufficient sampling for estimating the temporal average. (We will
show later that the other eigenvalues appear to increase in accuracy even for 106 cells.)
Indeed, we evolved the Lorenz equations until T = 105. From our estimates of the
longest decorrelation time of the generator (see Figure 3.5), we have between 103 and
104 decorrelated in time samples over this period. The empirical error in estimating
the cumulants should begin dominating the inaccuracy at around three digits. Be-
fore reaching this saturation, the data-driven method appears to exhibit a first-order
convergence rate concerning refining the number of cells, as exhibited by the dashed
line in both cases. This convergence rate is valid for all the cumulants except for the
first cumulant (the average value) of the z-variable, where the data-driven method
accurately estimates the value, even for a small number of cells.

To investigate the convergence of the other eigenvalues of the Lorenz attractor
is more challenging. Firstly, it is unclear whether eigenvalues and eigenvectors of
the Lorenz attractor are meaningful or well-defined in the limit of the ever-increasing
resolution of the deterministic Lorenz equations. The data-driven method introduces
a stochastic regularization in the estimation of the operator [34, 35]; however, specific
quantities are well-posed and can be computed in different manners that serve as a
comparison in the present case. In particular, the autocorrelation of any observable
of a system can be decomposed according to the eigenvectors and eigenvalues of the
Perron-Frobenius operator or generator via the formulas in [34, 35] and repeated in
Section 3. Thus, we show the calculation with an ever-increasing number of cells
(red) concerning the z-autocorrelation computed using temporal averages (blue) in
Figure 3.5, where the purple denotes an overlap between the two different methods
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Partitions

10
2

10
4

10
6

R
e
la

ti
v
e
 e

rr
o
r

10
− 6

10
− 4

10
− 2

10
0

Cumulants of z

"1

"2

"3

"4

"5
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of calculation. In each column, we construct the transfer operator in four ways:
the infinitesimal generator and the Perron-Frobenius operator with three different
timescales. Each row corresponds to an order of magnitude increase in the number
of cells for a given partition, starting from O(103) cells and ending with O(106) cells.
We see that at lower resolutions, the damping due to the loss of information of state-
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Fig. 3.5. Autocorrelation of the z Variable as a Function of Cell Number and Data-
Driven Method. Here, we show that as we increase the number of cells, we converge to the z-
autocorelation determined from the time series.

space initial conditions is quite substantial but ameliorated as one examines operators
over longer timescales. Despite the over-damping, one also sees that the method
captures the oscillatory timescale appropriately. This observation may be related to
the example in Appendix D of [34, 35], where the imaginary eigenvalues converged at a
second-order rate. As resolution increases, each of the separate methods of calculating
the autocorrelation becomes closer to the “ground-truth” temporal autocorrelation,
with the Perron-Frobenius operator estimated to be the longest timescale converging
at the fastest rate. This convergence shows that all the operators’ eigenvalues conspire
appropriately to produce the correct autocorrelation for the z observable. Next, we
look at what happens to an individual eigenfunction of the operator.

As mentioned in the previous paragraph, the autocorrelations use the other eigen-
values shown in Figures 3.6 and 3.7. We isolate the Koopman eigenfunction associated
with the quasi-invariant set of the Lorenz equations. This choice was determined by
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Fig. 3.6. Quasi-Invariant Set Koopman Eigenfunction State Space. Here, we show Koop-
man eigenfunctions associated with the Quasi-Invariant set of the Lorenz equations (second Largest
real eigenvalue), numerically continued from O(104) → O(105) → O(106) cells, respectively, from
left to right. We see finer detail structures emerge as resolution increases. The eigenfunctions here
are constructed from the generator’s left eigenvectors. The green circle highlights the trajectory at
time t = 5.

computing the second-largest pure real eigenvalue of the data-constructed infinitesi-
mal generator (the largest real eigenvalue is zero) and computing the left-eigenvector
associated with this eigenvalue via inverse iteration [17, 38]. We comment that there
are imaginary eigenvalues whose real part is larger and thus decorates more slowly.
We visualize this eigenfunction in state space in Figure 3.6. The blue and red regions
serve as the main divisors and are locations where a trajectory of the Lorenz equa-
tions stays for extended periods. These regions essentially correspond to trajectors
originating near the z-axis. These trajectories then sweep down close to the origin
before making a large excursion near the exterior of the Lorenz attractor and transfer-
ring to the opposite lobe. The underlying guide for the dynamics in this case can be
isolated to the heteroclinic connections between the fixed points of the Lorenz equa-
tions. As we increase resolution, finer-scale structures emerge in the interior lobes of
the Lorenz attractor. In other words, the Koopman eigenfunction becomes increas-
ingly intermittent as we increase resolution. At the lowest resolution (the left-most
plot in Figure 3.6), the white regions essentially correspond to the location of the
fundamental periodic orbit of the Lorenz equations.

In Figure 3.7, we visualize the same Koopman eigenfunction from Figure 3.6 as
a function of time by associating the dynamics (bottom row) at each point in state
space with the corresponding value of the eigenfunction (top row). We do this for
three different estimates of the operator (the columns) at three different resolutions
(O(104) cells in red, O(105) cells in purple, O(106) cells in blue). At around t ≈ 5,
we see a spike in all estimates of the Koopman eigenfunctions. This spike is an
early warning indicator that a transition to the quasi-invariant set is occurring. This
spike in the Koopman eigenfunction can be interpreted dynamically by examining the
time series of the Lorenz equations in the bottom row. After t ≈ 5, one sees a long
negative x and y excursion (as well as small values of z) followed by a long oscillatory
period in the x and y variables where transitions to different lobes do not occur.
Similarly, the spike in the opposite direction at time t ≈ 15 indicates a similar feature
but a transition from the positive to negative lobe. As a function of resolution, one
sees that the eigenfunction becomes increasingly intermittent as resolution increases.
Furthermore, one can see a higher effective resolution for this eigenfunction in the
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Fig. 3.7. Quasi-Invariant Set Koopman Eigenfunction Timeseries. Similar as Figure 3.6
but as a function of time. We see that the Koopman eigenfunctions are irregular as a function of
time and become increasingly intermittent as resolution increases. Furthermore, we see correspon-
dence between the different ways of constructing operators, with the Perron-Frobenius for τ = 10−2

providing an increased “effective” resolution for the Koopman eigenfunction. The green dots show
the trajectory and the value of the Koopman eigenfunction at t = 5.

case of the operator constructed over a larger timescale. In particular one sees that
the O(105) cell case of the τ = 10−2 operator is similar to that of the O(106) cell case
of the τ = 10−3 perron-frobenius operator and generator. Lastly, we comment that
the spike in the Koopman eigenfunction tends to coincide with regions in state space
where 0 ≈ ẋ ≈ ẏ ≈ x ≈ y ≈ z.

4. Conclusions. In this study, we discretized the Perron-Frobenius operator of
the Lorenz equations using a modified bisecting k-means algorithm. We investigated
the effect of increasing the number of clusters (i.e., the number of terms in the nonlin-
ear dictionary of the extended dynamic mode decomposition) up to 1,000,000 clusters
with respect to the ability to represent steady-state statistics of the state variables,
autocorrelations, and a Koopman eigenfunction. We partially addressed some of the
conceptual questions from the introduction:

1. What does it mean to approximate the Koopman eigenfunctions of a chaotic
dynamical system in the absence of noise? It seems that increasing the number
of terms in the dictionary yields better representations of steady-state statis-
tics, dynamics, and temporal autocorrelations; however, the eigenfunctions
themselves seem to become increasingly fractal and it is difficult to assess in
what sense the eingefunctions themselves are “converging”.

2. To what extent does increasing the number of terms of a nonlinear dictionary
“help”? If one is after statistical information, there is no added information
beyond the data using a piecewise constant basis in the nonlinear dictionary.
There is a compromise on the amount of data available and the ability to
estimate the operator’s entries.

3. At what timescale should a Koopman operator be constructed? It seems like a
naive construction of the infinitesimal generator is more dissipative than the
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Perron-Frobenius operator at larger timescales; however, Perron-Frobenius
operators constructed at timescales much larger than the Koopman eigenvalue
of interest quickly lose meaning. Thus the best strategy is should be iterative
in the absence of system information. That is, start with the generator to
obtain an estimate of the timescales involved, then directly construct a Perron-
Frobenius operator that is constructed on timescales that don’t “skip over” the
target timescale.

Extending the work here to more complex and higher-dimensional dynamical
systems is an interesting future direction. As shown in [34, 35], it is possible to
construct a data-driven representation of the statistics, even in the high-dimensional
setting; however, to effectively apply the methodology listed herein, it is necessary first
to perform a data-reduction technique such as SVD/PCA/EOF [24] or autoencoders
[18]. In addition, one can use other data-driven constructions of the infinitesimal
generator, such as that of [16], to better approximate generators over many timescales.
Extensions that can use a similar hierarchical approach to clustering could use a
physics-based partitioning (e.g., [20]), then further subdivide using additional physics
criteria or the k-means algorithm presenter here.

The goals of applying the extended dynamic mode decomposition are manifold.
The data-driven method provides a way of computing statistical eigenfunctions, which
often serve as a method for obtaining “early warning indicators” for interesting fea-
tures in a dynamical system. Additionally, they serve as the necessary ingredients in
certain theoretical relations, such as the calculation of turbulent transport operators
[36] or response functions [31]. The methodology outlined here provides an additional
tool for addressing challenges in complex systems research.
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