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ABSTRACT

The Earth system is often modeled as a dynamical system in what has come to be known as Earth System
Models. When used to study anthropogenically forced climate change, these models are forced in such a way
that they are not in a statistically stationary state. Yet, statistical statements are still made about the Earth
climate system using only a single trajectory by taking temporal averages. At each moment in time, one draws
a sample from a different distribution, raising questions about the utility of temporal averages, in stark contrast
to the utility of temporal averages in ergodic systems. This work follows in the tradition of using a toy model
to examine properties present in the Earth climate system. We aim to examine how we can make meaningful
statistical statements in non-stationary systems when only dealing with a single trajectory. We use the Lorenz
equations with a time-varying parameter as a starting point for comparing ensemble averages to temporal
averages. We find that, in so far as the control parameter induces a slow and smooth change in the dynamics,

the resulting statistics of ensemble averages compare well to those of temporal averages.

1. Introduction

In physical applications, it is often the case that samples obtained
from a time series do not come from a statistically stationary distribu-
tion. The Earth system is one such example where statistical properties
of observables change over time due to both orbital changes — such
as the time-dependence of the obliquity of Earth — and anthropogenic
forcing [1-3]. The Earth is a complex system with many interacting
components including the atmosphere, land, ocean, cryosphere, ocean-
biogeochemistry, and so-forth; however, it is plausible that there exists
a sufficient time-scale separation between short term atmospheric
weather patterns and the slowly evolving climate to consider the
weather as a quasi-stationary system dependent on slowly changing
external parameters. This intuition comes from the belief that weather
decorrelates in two weeks but still allows for emergent statistical
features over the multi-decadal climate time-scales, [4].

A key question in climate studies is how weather patterns change
in response to slow continuous changes of the Earth system. Or more
specifically:

1. In a smoothly-changing climate, do the weather statistics also
change smoothly?

2. How, and how soon, can we detect the changes in weather
patterns?

In this work, we seek to answer these questions for a much simpler
chaotic system, in the hope of making progress towards their answers
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in the original climate context. We quantify the extent to which a
dynamically chaotic system with slowly varying external parameters
is statistically similar to sequences of stationary distributions and the
extent to which ensemble averages and time averages correspond to
one another.

We choose the Lorenz 1963 system [5] as a baseline for our inquiries
due to its history of use as a model for chaotic dynamics and to inves-
tigate properties of the climate system [6-9]. We modify the Lorenz
equations by making one of its control parameters time-dependent, a
choice that we explain further in the manuscript. Previous works have
also added explicit time-dependence to the Lorenz equations [8,10,11];
however, here we focus on the change in system statistics induced
by the time-varying system parameters. This setting facilitates a thor-
ough comparison between the statistics generated in time-independent
and time-dependent parameter scenarios. Additionally, it enables an
analysis contrasting ensemble averaging and temporal averaging. Other
methods for characterizing non-autonomous dynamical systems in-
clude the “snapshot attractor” [12,13], which is independent of initial
conditions.

To assess statistical changes in the system’s behavior one could
track a fixed number of system observables or calculate statistics of
a snapshot attractor; however, we will instead use an operator-based
approach to learning a dynamical system’s statistical behavior, [14—
19]. The purpose of focusing on an operator is that changes in all other
observables follow directly from the change in the operator. Thus the
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Fig. 1. Trajectories of identical simulations of the Lorenz system run with p =26 (left) and p = 32 (right). Vertical axis is z. Different colors correspond to different partition states.

The attractor with a higher p value reaches larger values of z.

operator approach allows for a more general way to track changes in
statistical behavior.

Specifically, we study the evolution of the infinitesimal generator for
system probabilities, e.g. [20]. We use modern data-driven approaches
for constructing the transition probability operator and quantifying
the uncertainty of the matrix entries due to finite sampling effects,
enabling a geometrical and physically meaningful interpretation of
statistics [21-23]. The data-driven approximation yields a continuous-
time Markov chain representation of the system. A major advantage
of the statistical framework presented in this work is that it could be
scaled to more complex systems, including an Earth system model.

The remainder of this paper is organized as follows. Section 2
presents the model definitions used in this work: the construction of
Markov processes, the quantile-based state space partition, and the cal-
culation of the generator. In Section 3, we induce “climate change” in
the Lorenz equations via a slowly-changing parameter and observe the
resulting changes in statistics. In 3.2, we describe our methodology for
Bayesian uncertainty quantification. In 3.3-3.4, we use these methods
to characterize the effect of the changing “climate” using different
statistical measures. Section 4 summarizes the principal conclusions
and discusses possible future research directions.

2. Model definitions
2.1. Time-varying Lorenz equations
The Lorenz equations, introduced in [5], serve as the basis for our

work. These equations form a system of three ordinary differential
equations (ODE’s) as follows:

x=0(y—x) (€]
y=x(p—2)—-y (2)
z=xy-fz 3

Though originally presented as a simplified model for convection,
these equations have been used to study chaos and the limits of pre-
dictability. The equations exhibit steady, periodic, or chaotic behavior
depending on the choices of parameters p,o, and f. For choices of
parameter that yield chaos, the system creates trajectories that form
the famous “butterfly” attractor shape when integrated over time (see
Fig. 1). Furthermore, the Lorenz equations also constitute a physically
realizable dynamical system, see [24].

In this work, we follow in the tradition of using the Lorenz system to
study atmospheric predictability. We use the Lorenz equations to mimic
a feature present in statistics of the atmosphere: the non-stationarity
of the distributions being sampled. We shall first outline a geometric
framework for coarse-graining statistical properties of the system. Then,

we shall apply this framework to identify changes in statistics caused
by a change in the control parameters.
We treat the parameter p as time-dependent, following

p)=py+pt C)

with the initial value p, = 26 and limit the final integration time so
that we always end with a final value of p = 32. The choice of p
will vary between fixed values discussed later in the text. The start
and end values were chosen to identify the state space partition (see
below). However, one could choose any range of p values, as long
as they correspond to chaotic behavior of the Lorenz system. We do
not explore critical transitions because we are interested in studying
smooth changes in the statistics induced by change in the parameter p.
We shall examine specifically whether the statistics of the changing-p
scenario align with those of the corresponding static (or equilibrium)
attractors, i.e. static p. The other two control parameters, ¢ and g,
are held fixed at 10 and 8/3, respectively, which are the original
values used in [5]. Note, we prefer to consider the system as a non-
autonomous one rather than augmenting Egs. (1)-(3) with an equation
for p. Increasing p results in a upward shift of the z values. , a fact that
becomes obvious by examining the system’s non-zero fixed points

o072 = [£VAG = DxVBG - Do - 1] )

Variations in z tend to fluctuate around the fixed point z*. More
rigorously, the fixed point z* is a rigorous upper bound to the long
time average of z when p does not vary in time, [25].

We simulate the evolution of the Lorenz system by integrating the
equations forward in time using the fourth-order Runge-Kutta method
and a timestep of dt = 0.005. We use very long simulations (of 103
timesteps) to establish “perfect” ground truth baselines for static-p
attractors. When examining the changing-p scenario, we use a 100-
member ensemble of simulations with g = 1073, such that the total
ensemble has the same number of total samples as the “ground truth”
references.! Finally, to study the effects of finite sampling on the
changing-p system, we compare results for 5 = 1072 and 10~* with
results from the reference value of 1073,

The dynamics of the system are governed by Egs. (1)—(3), but statis-
tics are governed by the continuity equation for probability density,
P=Px,y,z1):

9P +0,([e(y=x)IP)+0,([x(p = 2) = yI P) + 9, ([xy — fz] P) = 0.  (6)

These equations have been discretized before using traditional meth-
ods such as finite differences, see [26]; however the advantage of
the methodology employed herein is that it allows a more efficient

1 The value p = 1073 with dt = 0.005 corresponds to 10° timesteps for each
ensemble member, and 10° - 100 ensemble members yields 10% samples.
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Fig. 2. The variable z as a function of time for a short period of a simulation of the Lorenz system with p = 28. Different colors correspond to different frequencies of occurrence:
red values fall above the 95th percentile of all z values in the simulation, violet—above the 75th. These quantiles were used to define the partition in Table 1. The blue, violet,

and red areas corresponds to macrostates A, B, and C, respectively, in Table 1.

data-driven numerical method since the “control volumes” adapt to
the shape of the attractor, see [23] for additional details on this
point. The data-driven method implicitly regularizes Eq. (6) through an
finite-volume upwinding method. See [14,20] for additional analysis.

In the following sections, we introduce a geometric partition of
the Lorenz equations’ state space to examine the system’s statistics.
This allows us to define a continuous-time Markov chain (CTMC)
representation of the system consistent with Eq. (6). We then introduce
the generator Q associated with the CTMC; the generator serves as the
summary statistic of interest in this work.

2.2. Partition definition

We focus on z as the variable of interest because it represents aver-
age temperature in the original context [5]. We divide the state space of
the Lorenz equations into 12 states based on three observed quantiles of
the variable z. We calculate the 75th and 95th quantiles in the reference
attractor with p = 28, the original parameter value used in [5]. We
use these quantiles as cutoffs to define the ‘normal’, ‘medium’, and
‘high’ macrostates, which we label A, B, and C, respectively. These
macrostates are illustrated in Fig. 2, which shows a short sample of
the system’s trajectory in z as a function of time. Here, the three colors
correspond to the three macrostates, with, e.g., the ‘high’ points in red
falling above the 95th percentile threshold. We further subdivide each
macrostate based on the signs of x and y, resulting in a total of 12
states. This allows for a detailed exploration of the system’s behavior
while maintaining reducibility to three easily interpretable macrostates.
This state space partition is shown in Table 1 and visually represented
as the different-colored regions in the attractor shown in Fig. 1.2

The Lorenz system spends most of the time in states with the same
sign of x and y (states 1, 4, 5, 8, 9, 12), while the states with opposite
signs of x and y are more transient. In other words, same-signed states
are more stable, and thus of more interest when studying the statistical
properties of the system in a limited-data setting. Note also that Eq. (3),
which governs the behavior of z, is symmetric with respect to x and y.
In our framework, then, the statistical properties of states 1 and 4, 2
and 3, 5 and 8, and so on are largely identical. Although the statistics
of some states are symmetric, the 12-state partition allows for a more
detailed representation of the system dynamics than a partition with
fewer states.

As described above (Eq. (5)), the equilibrium value of z is solely
determined by the parameter p. Thus a system with higher p will reach
an overall higher range of z values. Fig. 1 demonstrates this difference
graphically. The attractor on the left was generated with a fixed p = 26,

2 Note that since the attractor is three-dimensional, not all states are visible
in this two-dimensional view.

the one on the right with p = 32. Each color represents points in
one of the 12 states defined in Table 1. Notice that the right-hand
attractor is situated higher on the z-axis than the left-hand attractor. In
addition, the right-hand attractor has a higher variance in z. It follows
that a system with a higher value of p will transition to ‘high’ states
more frequently. It is important to note, however, that the difference
in state space volume seen here does not necessarily correspond to an
increased time spent in the ‘high’ states. That fact must be verified by
an examination of the system’s time statistics directly.

2.3. Generator construction

The definition of a partition allows for the mapping of simulated
trajectories of the Lorenz equations to continuous-time Markov chains
(CTMCs). In this section we describe the construction of the CTMC
generator, Q, which governs the evolution of the CTMC through

d
di
where p;(t) is the time-dependent probability of the system being in
state i. Furthermore, the variable p(t), representing the total probability
distribution of the system, is the integral of the probability density
P over a partition. A general method for translating a dynamical
system into a CTMC representation and then obtaining a data-driven
construction of the matrix Q is given in [23], but we give a brief
overview here.

Numerical simulation of the Lorenz equations yields a discrete
timeseries, which is then translated into a sequence of integers between
1 and 12 corresponding to the state (as defined in Table 1) associated
with the state-space location of the system at each timestep—the
Markov chain. For any system with n states, the generator O will be
an n X n matrix that can be constructed from the set of holding times
and exit probabilities for each of the n states.

Here, a holding time refers to the distribution of times the system
spends in a state before exiting. The average amount of time spent in
a given state i is denoted by (7;) and is obtained by calculating the
empirical average of a holding time. We then construct a matrix E such
that entry E;; corresponds to the probability of the system entering
state j given that it has exited state i, with E;; = —1 by definition.
Each column corresponds to exits from a given state.

We can now construct the generator Q as follows:

0;; = E; /(T}) 8

where E is the matrix of exit probabilities and (7}) is the average
holding time of state j. The generator Q thus encodes both the expected
holding times of all states and the transition pathways of the system.
Combining the state space partition ( Table 1) and the form of
the generator, we have derived a summary statistic of the system

pi = Q[jpj )
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(Ts) = 0.205

Fig. 3. Graph network representation of the generators for p = 26 (left) and p = 32 (right) using the aggregated partition of three macrostates; blue, violet, and red correspond
to macrostates A, B, and C, respectively. Edges between different nodes are labeled with the exit probabilities of the associated transition. Each node is labeled with the mean
holding time of that macrostate. For this model, both probability of the system entering a ‘high’ state and the time spent in that state increase with higher p.

Table 1

Definition of the geometric quantile-based state space partition. Each column is a discrete state, determined based on the value of z and the
sign of x and y. A, B, C represent three aggregate macrostates defined only by the value of z.

A B C

1 2 3 4 5 6 7 8 9 10 11 12
x - + - + - + - + - + - +
y - - + + - - + + - - + +
z <22.5 225<z<379 >37.9

that can be used to study its behavior in different parameter settings.
Consider the following example, which uses the three macrostates A-C
as a simplification of the partition in Table 1 for visual clarity. Here,
macrostate A (‘normal’) is listed first and macrostate C (‘high’) is listed
last. We simulate the time evolution of the Lorenz equations with p = 26
and p = 32; these trajectories are plotted in Fig. 1. Recording the
holding times and exit probabilities from each state, we construct the
following generators for p = 26,

-1.0 083 00 s 00 00
10 -10 10 0.0 # 0.0
00 017 -10 00 00 =
-22 311 0.0
=| 22 =377 18.06 9
00 066 —18.06
and p = 32,
~10 048 00 || 55 00 00
10 -10 10 0.0 ﬁ 0.0
00 052 -1.0 00 00 o_lls
-357 233 00
=| 357 —48% 785 |. (10)
00 255 -7.85

Here we have decomposed each generator into a product of the exit
probability matrix and the rate matrix, where the diagonal entries of
latter are shown as the inverse mean holding times. These generators
can be used to examine the behavior of the system. For example,
non-zero off-diagonal entries Q;; indicate the existence and relative
likelihood of a transition pathway from state i to state j. (Note that
transitions exist only to adjacent states.) The magnitude of each diago-
nal entry is interpreted as the inverse of the average holding time of a
state, an analog for its stability. Our construction of the generator thus
encodes the coarse-grained system statistics. As long as a partition with
clearly defined states is chosen, the generator can be used to compare
the occurrence and stability of those states in different parameter
settings of the system.

Fig. 3 is an alternate graphical representation of the generators
shown above. Here, the edges of the graph connecting different macro
states are labeled with the exit probabilities associated with those
transitions. Each node is labeled with the average holding time of that
macrostate. Notice the differences between the generator represented
on the left and the one represented on the right. At a higher value

of p, the probability of transitioning from macrostate B to macrostate
C increases, indicating an increased chance of entering the ‘high’
macrostate. Furthermore, the average time spent in each macrostate
also changes. The system spends more time, on average, in the ‘high’
macrostate (C), and less time in the ‘normal’ macrostate (A). We thus
observe that at higher p, ‘high’ states are both more frequent and more
stable.

3. Results for time-dependent p

Having shown that the generator can be used to capture differences
in statistics between different parameter settings, we proceed to use it
to examine the statistics of a Lorenz system with a smoothly-changing
parameter p. We vary the value of p linearly and continuously in time,
as in Eq. (4), from an initial value (26) to a final value (32). We initially
run all simulations with p = 1073.

We are interested in verifying that the system changes smoothly
and continuously. That is, we expect any statistics calculated for the
changing-p attractor to fall between those same statistics calculated for
attractors with p fixed at the endpoints. This expectation is reasonable
since there are no critical transitions in the range p = [26,32]. In the
presence of tipping points, the detection of change is simpler, since the
induced change in statistics would be “catastrophic”. The question of
detecting change in the absence of such abrupt transitions with only
a single dynamical trajectory is more complex. If the statistics change
sufficiently slowly, then sampling a single dynamical trajectory should
suffice for gathering statistics since there are enough independent
samples of the “same" process; however, we shall make this precise by
comparing a single trajectory to an ensemble.

3.1. Macrostate statistics

We begin by investigating the holding time statistics of the changing-
p simulation as compared to those of the static-p reference attractors at
the two p endpoints. Fig. 4(a)-(c) shows the distribution of holdings
times for the p = 26, changing-p, and p = 32 simulations, using the
same aggregated three-state partition as in Fig. 3. Here, the p = 26
and p = 32 cases are shown for the “ground truth” baselines; the
changing-p scenario was run as a 100-member ensemble with varied
initial conditions and p = 1073. Each row in Fig. 4 corresponds to
one of the three macrostates (C being ‘high’), and each column—to a
simulation with a different p. Comparing the left-most (p = 26) and
right-most (p = 32) columns, we observe a shift to the left of the
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Fig. 4. Distribution of holding times for three scenarios of p, using an aggregated state-space partition. The rows correspond to macrostates A ('normal’, top) through 3 (Chigh’,
bottom). The columns correspond to simulations with p = 26 (left), p changing from 26 to 32 (middle), and p = 32 (right). The system spends more time in the ‘high’ state for

higher values of p.

macrostate-A distribution and a shift to the right of the macrostate-
C distribution. This indicates increased stability of the ‘high’ states,
as the system spends more time in those states, in agreement with
observations made about Fig. 3. The middle column of Fig. 4 shows
the holding time distributions observed for an ensemble of simulations
with p varying from 26 to 32. Note the shape of these distributions:
they seem to lie directly between the distributions generated at either
endpoint. Compared to the distribution for p = 26, the holding times
of the changing-p scenario demonstrate a distinct shift towards more
time spent in the ‘high’ states: the distribution of macrostate C shifts to
the right while that of macrostate A shifts to the left. At the same time,
this shift is less pronounced than if we were to compare the p = 26 and
p = 32 distributions directly. This suggests that the statistics gathered
in a scenario with a continuous change in p lie smoothly between the
statistics associated with the system’s initial and final attractor. In other
words, that time-averaged statistics gathered from a changing attractor
represent the system’s approximate location in parameter space.

In order to further probe the question of time-averaged statistics, we
proceed to perform the time-averaging over smaller periods. Within the
full time frame of the simulation, which is run from p =26 to p =32, a
sliding window of size 6p = 2, centered at each of p € {27,28,29,30,31},
shall be used to track sequential changes in the generator entries. Thus,
for any statistic used in the following sections, time averages over the
windows of (26, 28), (27, 29), etc. shall be calculated, through (30, 32),
for a total of five windows. Statistics may then be compared both across
windows and to static-p reference values. We shall further compare a
single instance of the changing-p scenario to an initial-value ensemble
of 100 members, all run over the same changing-p frame.

3.2. Steady state statistics

We first examine the steady state distributions of the time window-
average changing-p generators as a diagnostic for the smoothness of
observed changes. The steady state distribution of a generator is defined
as the eigenvector corresponding to an eigenvalue of 0. In the CTMC
analogy, it represents the infinite-time average of the time spent in each

of the Markov states. In order to compare two steady state distributions,
we employ the Kullback-Leibler divergence for discrete distributions:

dl(X))

dy(x)
where d, and d, are the two distributions being compared, and the sum-
mation is performed over all possible values x of the distributions. The
KL divergence is a widely used information-theoretic measure related
to Shannon entropy [27]. A higher absolute value of D corresponds
to more difference between the distributions. The KL divergence is
asymmetric, and measures the divergence of d, from d,.

We derive quasi-steady state distributions for generators defined
over each of the five windows of the changing-p simulation. Fig. 5
shows a comparison of each of these quasi-steady states against the
steady state distributions of the reference static-p attractors. Using the
discrete KL divergence, each of the sliding-window quasi-steady states
is compared against the steady state of each static-p attractor for p
ranging from 27 to 31. These derived values are plotted on the y-axis
against the comparison p values on the x-axis. Each line corresponds
to one window; values derived from the single-instance simulation are
shown as solid lines with markers, while the 100 ensemble members
are shown as dotted lines. We additionally compare the quasi-steady
state distribution for the entire changing-p simulation to each of the
reference steady state distributions; this is shown in black.

Notice that for each window, the KL divergence is smallest in
the case of the comparison to the static-p attractor at the value of
p corresponding to the middle of that window. In other words, the
quasi-steady state of the first window is most similar to that of an
attractor with p = 27, the quasi-steady state of the second to that
of an attractor with p 28, and so on. The actual divergences at
these minima are very small and close to zero. Furthermore, the full
changing-p simulation, which has a mean p of 29, has a profile very
similar to that of the window centered at p = 29. This implies that even
in a continuously changing attractor, the quasi-steady state of the time-
averaged generator is close to the steady state of the static attractor
associated with the average value of p in that time window. This
supports the hypothesized smoothness of change in generator statistics

D(dy, dy) = )" dy(x)log ( (11
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Fig. 5. KL divergence of the quasi-steady state distributions of each of five sliding
windows in the changing-p simulation (shown as different-colored solid lines) compared
to the steady state distributions of attractors with static p = 27 through 31. The same
is shown for 100 ensemble members, each represented by a set of dotted lines for
each window. The black lines correspond to the same metrics calculated over the full
simulation period.

in a changing attractor. Note also the relatively small ensemble spread,
which suggests the observed differences between quasi-steady state
distributions are not sensitive to changes in the exact system trajectory.
We would like to emphasize that the KL divergence alone is useful only
as a relative, qualitative measure of difference. In order to quantify
the change in the generator, we proceed to define a framework for
uncertainty quantification in the following section.

3.3. Framework for uncertainty quantification

So far, we have not considered uncertainty due to finite sampling
effects. We wish to now address the question “Is there an uncer-
tainty associated with these generator entries and the statistics they
describe?” One might expect finite-sampling effects to result in large
uncertainties, particularly in the case of the changing-p simulations,
where the system spends a limited amount of time in the vicinity
of any given value of p. We have observed that statistical averages
over periods of the changing-p simulation appear to follow the static-p
environments: is this observation statistically significant?

We are thus interested in quantifying the uncertainty associated
with the generator Q, as well as the derived time-averaged statistics.
We proceed to describe a method for the uncertainty quantification of
the entries of a generator matrix, which encompasses uncertainties in
both the average state holding times and exit probabilities. This method
is described in more detail in [23] and is similar to other methods
of quantifying the uncertainty of transfer operators [28,29]. We use
this framework to further quantify the observed differences between
different scenarios and explore the question of detecting change using
the generator statistic.

In order to perform this uncertainty quantification, we employ a
Bayesian approach as in [23,30] which we review in the Appendix.
With sufficient data (as is the case here), the uncertainty associated
with generator entries are well approximated by Gaussian distributions
where the empirical mean is the mean of the Gaussian distribution and
the variance scales like n=! where » is the number of data samples of
an observed holding time for state i or exits from state i.
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3.4. Holding time statistics

The addition of uncertainty quantification adds nuance to the anal-
ysis of the changing-p generator. Fig. 6 shows the evolution of the
average state holding times over the course of a changing-p simulation.
Six of the twelve states (1, 2, 5, 6, 9, and 10) were chosen for visual
clarity; the other six are symmetric with the ones shown here (see dis-
cussion in 2.2). Following the sliding-window time-averaging scheme
described in the Appendix, each red point in Fig. 6 corresponds to an
estimate derived from the window centered at that value of p. Thus the
red point at p = 27 shows the average over the (26, 28) window, the one
at p = 28 from the (27, 29) window, etc. The blue ribbon shows the 2¢
confidence interval associated with the same estimates made with the
full 100-member ensemble. The black points correspond to reference
values of expected holding times derived from long simulations of static
p for each integer in [26,32]. All error bars shown correspond to a 2¢
width derived from the Bayesian uncertainty quantification described
above. The error bars for the static-p reference points are small and
therefore omitted for visual clarity.

We begin by observing that there is an overall high correspon-
dence between the estimates based on “windows” of the changing-p
simulation and the reference values from static-p attractors. With some
exceptions (in state 5), the reference values fall within the error ranges
of the changing-p estimates. The lack of correspondence between the
time-averaged values and the ensemble average in the case of state 5
underscores the importance of ensemble simulations in understanding
the internal variability of a system. In all cases, including that of state
5, the 100-member ensemble follows the trend set by the reference
(static-p) attractors closely and with little uncertainty. This supports the
earlier observation that the holding time distributions change smoothly
with a changing attractor. The time-averaged statistics of a changing-
p attractor follow the statistics of intermediate static-p attractors for
values of p that the system “passes through”. In other words, this
suggests that a system with varying p changes along the same space
of possible attractors as the set of attractors associated with stationary
values of p.

Note that the “best-behaved” states are states 1 and 9. We mean
that these states both (a) have the smallest uncertainties and (b) the
most pronounced trends. Recall that state 9 is one of the two stable
‘high’ states, and 1 is one of the two stable ‘normal’ states. We are
thus seeing evidence of the increased visitation of the ‘high’ states at
higher values of p, which comes at the expense of the visitation of the
‘normal’ states. This was to be expected from the structure of the Lorenz
attractor (Fig. 1) and the initial comparison of the generators in Fig. 3.
Importantly, this phenomenon of increased stability of ‘high’ states at
higher p is supported here not just by the reference attractors, but also
by the changing-p ensemble.

3.5. Detection and significance thresholds

In the spirit of the question of detecting temporal change from a
timeseries with a shifting underlying distribution, we are particularly
interested in quantifying the change between the later windows in
Fig. 6 and the earlier ones. Because the particular distributions in
question are approximately normal, we use the Kullback-Leibler (KL)
divergence for two Gaussians to quantify the difference between two
distributions d; and d,:

oF + (= )

Dy dy) =log 2+ 177 1 (12)
o} 20-5 2
where y; and o; correspond to the means and standard deviations of
the distributions. Here the KL divergence is being used for a different
purpose than before: the detection of significant changes in the pres-
ence of uncertainty. As before, a larger absolute value of D corresponds
to a larger difference in the distributions. To give some intuition as
to the scale of D: in the case when 6; = o,, a 20 difference in the
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Fig. 6. Average holding times for states 1, 2, 5, 6, 9, and 10 (ordered top-down and left-to-right). Reference values derived from static-p attractors are shown in black. Red points
correspond to values derived from the changing-p simulation using a sliding window of size §p = 2 centered at each of p € {27,28,29,30,31}; their x-axis locations correspond to the
centers of these windows. All error bars show 2¢ confidence intervals derived from Bayesian uncertainty quantification. Blue ribbon shows 2¢ confidence interval for 100-member
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Fig. 7. KL divergence of the mean holding times in later windows (as shown in Fig. Fig. 6) from that of the first window for states 1, 2, 5, 6, 9, and 10 (ordered as in Fig. Fig. 6).
Round markers indicate divergences with significance higher than 20,. Red, yellow, and blue sequences correspond to simulations with = 1072, 103, and 10, respectively; all

simulations have p changing linearly from 26 to 32.

means corresponds to D = 2, which can serve as a rough benchmark
for significance.

Fig. 7 shows, for each corresponding panel in Fig. 6, the KL diver-
gence between the distribution for the first window of (26, 28) and each
of the latter four windows. The red, yellow, and blue series correspond
to the same experiment performed on a changing-p simulation run with
p = 1072, 1073, and 1074, respectively. Note that, for most states,
the divergence increases as p increases. Furthermore, for most states,
including the states of particular interest (1 and 9), D increases mono-
tonically with p. This quantitatively confirms the conclusions drawn

above: as p increases, the system transitions smoothly to statistics
associated with higher-p attractors.

We now look at the problem in reverse, i.e. we quantify when a
detection of a change in the parameter p can be made. To that end, we
identify those distributions whose means are 20, away from the mean
of the distribution for the first window y,. These cases, which we treat
as “significantly different”, are shown with circular point markers in
Fig. 7, whereas “insignificant" divergences are marked with diamonds.
One would expect that, with sufficient sampling, changes in distribu-
tion could be detected sooner. Thus one would expect that D would
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Fig. 8. Same as Fig. Fig. 6 (left) and Fig. Fig. 7 (right), but for the exit probabilities associated with the transitions between states 5 and 9. Note the thin blue ribbon in the left

plot, which shows the 2o confidence interval of the 100-member ensemble.

increase monotonically in time (over the window averages), and that
the changes would become significant over time. Alternatively, more
frequent sampling (in this case, a timeseries with a smaller p) should
also lead to a sooner detection. Observing Fig. 7, we find that this is
largely the case. However, there are some exceptions. For example,
in states 2 and 5, the timeseries with a lower sampling rate (in red)
sometimes makes a detection when the higher-rate timeseries does not.
This speaks to the uncertainties associated with these metrics. Similarly,
in state 6, which in Fig. 6 can be seen to have large uncertainties, none
of the timeseries make a detection except for the last window in the
best-sampled case. Thus detection is only possible in cases where the
uncertainties can be reduced such that they are small compared to the
size of the underlying change.

3.6. Exit probability statistics

In the above discussion, we have largely focused on the evolution of
the mean holding times of the various states. We are now interested in
verifying the same results for the exit probabilities, which inform the
off-diagonal entries of the generator.

In particular, we focus on the transition pathways from state 5 to
state 9. This is one of two possible transitions into the ‘high’ macrostate
(the other is from state 8 to state 12, the statistics of which mirror those
of the case shown here).® This transition is of interest because the ‘high’
macrostate is initially rare, but becomes more frequently sampled with
increasing p. The left-hand plot in Fig. 8 is analogous to the plots in
Fig. 6, and the right-hand one—to those in Fig. 7.

Looking at the left-hand plot, the probability for this transition
increases steadily at higher values of p. This is observed for both
the reference values and the estimates derived from the changing-p
simulation. This trend implies that entries into the ‘high’ states become
more frequent at higher p, which is in agreement with the observations
made earlier for static attractors (see Fig. 3). Note also the close
correspondence between the reference values and those derived from
the changing-p simulation. In almost all cases, the reference values fall
within the 26 uncertainty range of the changing-p time averages. The
blue ribbon (which here appears more like a line) corresponding to the
100-member ensemble 2¢ confidence interval also follows the reference
values closely and with minimal uncertainty.

The right-hand plot of Fig. 8 uses the KL divergence to quantify the
change in the distribution of expected exit probabilities at higher p.
Just as before, the change in the system’s behavior becomes “more
observable” at a later point in the simulation with more frequent
sampling. The exit probabilities can thus also be used to confidently

3 Note that in the case of the Lorenz system, the transition pathways
themselves do not change at the different values of the parameter p explored
in this work, though this need not generally be the case.

characterize changes in the shifting attractor and/or “detect” a change
in p. Having now examined the behavior of both the holding times and
exit probabilities in a changing-p scenario, we conclude that both of
these properties evolve smoothly in a smoothly-changing attractor.

4. Conclusion

This work follows in a tradition of using low-dimensional dynamical
systems as simplified analogs to aspects of the Earth’s climate system.
By focusing on the robustness of statistics gathered from a distribution
changing in time, we address questions relevant to the foundational as-
sumptions of contemporary climate science. In particular, it is common
practice to focus on decadal averages of statistics, an assumption that
is predicated on statistics changing smoothly over that timescale.

The Lorenz system with a time-varying control parameter was used
to probe key questions of smoothly changing statistics. We partitioned
the state space of the equations, used the partition to define system
statistics, and explored how those statistics change over time. We used
the framework of a continuous-time Markov chain to specify a particu-
lar statistic of interest: the generator, which encodes information about
both the holding times of the system states and the relative probabilities
of transitions between states. Using the information contained in the
generator, we showed that the statistics of this smoothly-changing
chaotic system also change smoothly and explored the uncertainties as-
sociated with sampling a changing attractor. Furthermore, we showed
that average statistics over short periods within the changing simula-
tion serve as good approximations to the statistics of the corresponding
static attractor.

The simulations performed here ignore the presence of seasonal and
diurnal cycles in the Earth’s climate, which affect the statistical prop-
erties of the system. A future iteration of a similar study would benefit
from the incorporation of representative seasonal and diurnal cycles, as
well as additive noise. In addition, repeating the same procedure with
more complex dynamical systems, such as the Lorenz 1996 system [31],
would strengthen the conclusions drawn here.

Although this work focuses on the Lorenz system, the methodology
presented here can be generalized to the study of significantly more
complex systems. Souza shows in [23] that this methodology can
be used to study the stationary statistics of idealized climate models
(e.g. [32]). Following the same steps outlined in this work, one can
envision studying the evolution of climate statistics from state of the art
climate simulations and available observations. The primary difficulty
in applying these methods is to choose informative partitions of state
space. In the context of the Earth’s climate, a state space partition might
be defined, for example, such that certain states correspond to rare
events of particular interest. Given a suitable partition, the analysis
methods presented here can be used to study the frequency of particular
atmospheric configurations that give rise to extreme scenarios and how
such frequencies change under anthropogenic forcing. Furthermore,
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the generator statistic fully characterizes the Markov system and can
be used to compute the full range of system statistics. The methodol-
ogy presented here thus also has applications to the compression of
information from complex systems.

Funding

G.G. acknowledges support through the MIT Undergraduate Re-
search Opportunities Program. G.G., A.S., and R.F. acknowledge sup-
port by Schmidt Sciences through the Bringing Computation to the
Climate Challenge, an MIT Climate Grand Challenge Project.

CRediT authorship contribution statement

Gosha Geogdzhayev: Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualization, Writing — original
draft, Writing — review & editing. Andre N. Souza: Conceptual-
ization, Methodology, Project administration, Resources, Software,
Supervision, Writing — original draft, Writing - review & editing.
Raffaele Ferrari: Conceptualization, Funding acquisition, Project
administration, Resources, Supervision, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Supporting materials, including the data used in this work, are
available at https://github.com/geogdzh/LorenzExtremeVisualization.

Acknowledgments

G.G. would like to thank the MIT Climate and Sustainability Consor-
tium for their continued support. A.S. would like to thank Glenn Flierl
for numerous discussions on climate change that helped influence the
direction of this manuscript.

Appendix. Uncertainty quantification of generator entries

Here we provide a brief introduction to quantifying the uncertainty
of entries of the generator corresponding to a Continuous Time Markov
Chain (CTMC) with finite state space. See [23] for further details and
examples. We are interested in obtaining a distributional form for the
entries of the generator matrix based on finite samples coming from
data. We assume distributional forms for the holding times and exit
probabilities of the system, which in the Bayesian formulation serve as
the likelihood functions. We would then rely on the Bayesian update rule

posterior = likelihood X prior 13)

to update the distributions of the distribution-specifying parameters
based on the holding times and exit probabilities of an observed system
trajectory.

To perform a Bayesian update, one must also specify a prior distri-
bution. Upon specification of a prior it is often the case that one has
to perform Monte-Carlo simulations to obtain a posterior distribution;
however, for some likelihood functions, it is possible to specify a prior
distribution that results in a posterior of the same distributional form.
Such distributions are called conjugate priors and an update thus re-
quires only the updating of the parameters of the distribution. We shall
make use of conjugate prior distributions for computational efficiency
and analytic convenience.
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We now specify our choices. For each state i, holding times are expo-
nentially distributed for a CTMC with finite state space. The exponential
distribution thus serves as a natural choice for the likelihood function.
Furthermore, the likelihood function has a well-known conjugate prior
— the Gamma distribution — which we take as our prior distribution.
Thus the posterior distribution will also be a Gamma distribution, by
definition of the conjugate prior.

For each state i, exit probabilities are viewed as a multinomial distri-
bution for a CTMC with finite state space. The multinomial distribution
thus serves as a natural choice for the likelihood function. Furthermore,
this likelihood function has a well-known conjugate prior—the Dirichlet
distribution-which we take as our prior distribution. Thus the posterior
distribution will also be a Dirichlet distribution, by definition of the
conjugate prior.

We have thus specified all that is needed for a Bayesian formulation
of the generator. Following the original form of the generator given in
Eq. (8), we now define a Bayesian generator in the same way. The form
of this Bayesian generator can be summarized as follows for a simple
3-state matrix:

-1 D)y [Dsli|[G, 0 0
O=([D); -1 [D;h||0 G O a4
[Dil, [Ds], -1 0 0 Gy

where G, is a Gamma distribution and [D,] ; corresponds to the j’th
component of Dirichlet distribution for the column.

We now have a framework to quantify the uncertainty of the
generator entries. Starting with uninformative priors and using the
Bayesian update rule (13), we update the priors based on the observed
holding times and exit probabilities for a given trajectory. This results
in a Bayesian generator matrix where each entry is itself a distribution
over possible values. The variances of these distributions can then
be interpreted as uncertainties in each entry of the generator. In the
presence of a large number of observations, the marginal distributions
of each entry are well approximated by Gaussian distributions.
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