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Abstract11

Fast emulators of comprehensive climate models are used to explore the impact of an-12

thropogenic emissions in future climate. A new approach to emulators is introduced that13

predicts distributions of coarse-grained monthly averaged variables as a multivariate Gaus-14

sian distribution. The emulator is trained with a state-of-the-art climate model and serves15

as a good first-order representation for many statistics of future climates. The emula-16

tor is applied to statistics of surface temperature and relative humidity for illustrative17

purposes, but the approach can be applied to any other variable of interest as long the18

multivariate Gaussian approximation captures the bulk of the distribution. Importantly19

the emulator accounts for the internal variability of the system, allowing one to exam-20

ine shifts in distributions of climate variables. In this sense the work can be considered21

as an extension of pattern scaling emulators that focus on the evolution of the mean rather22

than the distribution of climate variables.23

Plain Language Summary24

Assessing how the climate changes as a consequence of human emissions of green-25

house gases requires modeling how ranges of temperatures and their likelihoods can change26

over time. Climate models serve as the best guess on how humans affect the climate, but27

they do not explore every possible future scenario that could be of interest. To this end,28

we develop a data-driven method that can serve as a fast and cheap surrogate to eval-29

uate likely changes in variables like surface temperature and relative humidity at a re-30

gional scale in future climates. This work extends previous approaches in that it predicts31

not only the evolution of the mean of those variables, but also of their fluctuations due32

to internal variability in the climate system.33

1 Introduction34

In the study of climate change, it is crucial to explore the response of the Earth35

system to a variety of possible future greenhouse gas emission scenarios and quantify the36

uncertainties associated with future projections. State-of-the-art Earth System Models37

(ESMs), such as those participating in the Climate Model Intercomparison Project (CMIP,38

Eyring et al. (2016)), are arguably our best approach for quantifying the Earth system39

response to increased greenhouse gas concentrations. These large-scale models aim to40

represent as many aspects of the climate system as faithfully as possible. However, be-41

cause of the high computational and material cost of running ESMs, these models can42

only simulate the Earth system response to a few potential future scenarios (Tebaldi,43

Debeire, et al., 2021). On the other hand, studies of climate mitigation and adaptation44

strategies often seek to explore a wide range of possible solutions, creating a need for meth-45

ods to compare localized impacts across a wide range of emissions scenarios (O’Neill, Tebaldi,46

Van Vuuren, et al., 2016; Waidelich et al., 2024).47

In recent years, emulators of climate models have been gaining popularity as a way48

to extend the utility of ESMs. Climate emulators are simplified models trained to cheaply49

and quickly recreate the behavior of ESMs. The importance of emulators is likely to rise50

due to increasing and competing computational demands from the ever refining spatial51

resolution, complexity as embodied by the number of model components and their so-52

phistication, the interest in using more accurate numerical methods (and hence compu-53

tational grids), and the need to run initial condition ensembles, besides alternative sce-54

narios (Nair & Toy, 2016; Griffies et al., 2020; Souza et al., 2023; Taylor et al., 2023; Sil-55

vestri, Wagner, Campin, et al., 2024; Silvestri, Wagner, Constantinou, et al., 2024; Schnei-56

der et al., 2024, 2023). The necessity of emulators is to both compress existing informa-57

tion into a more manageable form as well as to bridge the gap between the computational58

demand of running a full ESM with computational hardware available to everyday con-59

sumers. While emulators are most commonly used to extend ESMs to arbitrary climate60
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change scenarios, emulators have also been developed for other applications, including61

climate model downscaling (Doury et al., 2023), parametrization of subgrid-scale pro-62

cesses (Li et al., 2019), and model parameter calibration (Peatier et al., 2022). This work63

focuses on the class of emulators trained to extend ESMs to arbitrary future scenarios.64

The simplest and most common emulation technique in this area is pattern scaling (San-65

ter & Wigley, 1990; Huntingford & Cox, 2000; Mitchell, 2003). Pattern scaling estimates66

spatially resolved changes in climate variables by regressing local variables on global mean67

temperature. While pattern scaling performs well for projecting local mean temperatures (San-68

ter et al., 1990; Lütjens et al., 2024), it has no inherent probabilistic component and is69

significantly less accurate for other climate variables (Tebaldi & Arblaster, 2014; Tebaldi70

& Knutti, 2018). This work focuses on the probabilistic component. After all, a shift in71

a climate variable is only significant if it is outside the realm of natural variability of the72

system.73

Work over the past two decades has augmented pattern scaling with various rep-74

resentations of uncertainty (Zelazowski et al., 2018; Alexeeff et al., 2018; Goodwin et al.,75

2020; Gao et al., 2023) and introduced more complex statistical emulators (Castruccio76

et al., 2014; Beusch et al., 2020). Much recent work has also been dedicated to construct-77

ing machine learning-based climate emulators (e.g. Watson-Parris et al. (2022); Yu et78

al. (2024); Christensen et al. (2024)). While these varied approaches have improved upon79

the pattern scaling baseline by adding uncertainty quantification and better represen-80

tation of nonlinear relationships, the need remains for the development of robust emu-81

lators addressing multiple variables (individually or jointly), at scales relevant to impacts,82

and able to represent effectively the internal variability of the model emulated.83

In addition, for the case of deep-learning methods, questions remain about their84

overall skill compared to pattern scaling (Lütjens et al., 2024), the lack of emulator in-85

terpretability, and the computational cost of training. Furthermore, while many emu-86

lators have been developed to reproduce annual (Goodwin et al., 2020; Beusch et al., 2020)87

and seasonal (P. Holden et al., 2014; Alexeeff et al., 2018) averages of climate variables,88

few have looked at reproducing monthly data (Osborn et al., 2016a; Castruccio et al.,89

2019; Nath et al., 2022). Monthly climate projections are important for understanding90

detailed impacts of climate change, such as changes in the seasonal cycle and other phe-91

nomena of agricultural relevance (Guo et al., 2002; Odjugo, 2010; Kemsley et al., 2024;92

Osborn et al., 2016b). Impact models sometimes require even higher temporal and spa-93

tial fidelity, in which case the model presented herein is viewed as a first step towards94

those cases.95

In this work, we develop a data-driven emulation method for spatially resolved monthly96

temperature and relative humidity. Our method is fast, flexible, interpretable, and prob-97

abilistic. In designing this methodology, we sought to represent not just the ensemble98

mean of the ESM but the entire ensemble distribution. Assessing ensemble spread is among99

the most reliable ways of quantifying the internal variability of the climate system as rep-100

resented by ESMs (Collins & Allen, 2002; Tebaldi & Knutti, 2007; McKinnon & Deser,101

2018; Tebaldi, Dorheim, et al., 2021; Lehner et al., 2020). It has also been noted that102

projections accounting for model spread are vital to improving climate adaptation (Hansen103

et al., 2012; Deser et al., 2012; Woodruff, 2016). A sufficiently large ensemble is neces-104

sary to infer distributions of internal variability from a set of individual realizations. For105

this reason, we choose to emulate the evolution of climate variables generated with a CMIP-106

class model, specifically MPI-ESM1.2 LR (v1.2.01p7) (Mauritsen et al., 2019), that ran107

a large ensemble (50 members) of simulations for a number of emissions scenarios (see108

Section 2 for details).109

Our approach assumes that the internal variability of the climate system is well-110

approximated by a finite number of spatial modes. We define these modes using Empir-111

ical Orthogonal Function (EOF) decomposition, (Lorenz, 1956; Kutzbach, 1967; Barn-112

ston & Livezey, 1987a), and see Hannachi et al. (2007) for a comprehensive review of the113
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technique’s history. EOF modes have been shown to effectively capture the patterns of114

variability of the Earth system (Barnston & Livezey, 1987b; Hannachi et al., 2007). The115

modes are ranked according to the fraction of overall variability they capture. The lead-116

ing EOF modes represent patterns that span large geographical regions and can, with117

some limitations (Monahan et al., 2009), be interpreted physically. Using a subset of lead-118

ing EOF basis functions as a fixed-in-time orthogonal basis for the projection of ESM119

data, we model the statistics of EOF amplitude coefficients as a function of global mean120

temperature (similar to pattern scaling). We further model the coefficients as a multi-121

variate Gaussian distribution, thus also addressing correlations among the spatial modes,122

and therefore modeling a coherent spatial structure of the variables of interest.123

The Gaussian assumption for the EOF amplitudes may seem overly restrictive for124

many climate variables. However, the leading EOFs represent averages of the original125

variables over large swaths of the Earth. The monthly and spatial averaging makes the126

multivariate statistics of the EOF amplitudes more Gaussian than the original variables,127

but other coarse-graining techniques could be used to improve further the skill of the Gaus-128

sian approach described here, see Falasca, Basinski-Ferris, et al. (2024). We illustrate129

our approach for two variables: surface temperature and surface relative humidity. Still,130

the approach is agnostic to the variables being emulated. It can easily be applied to any131

monthly variables from any ESM ensemble, so long as their EOF amplitudes have ap-132

proximately multivariate Gaussian statistics. Our probabilistic emulator is computation-133

ally efficient and, once trained can be run many times at little additional cost on mod-134

est hardware such as single-core CPUs. This computational expedience allows us to gen-135

erate a synthetic large ensemble for the exploration of internal variability of the climate136

system, similar to Castruccio et al. (2019). Furthermore, the Gaussian assumption al-137

lows us to calculate the distributions for observables of interest in closed form.138

We condition our emulator on the ensemble mean global mean temperature. Global139

mean temperature is generally understood to be approximately linear in cumulative emis-140

sions (H. D. Matthews et al., 2009; Masson-Delmotte et al., 2021), given a smoothly-changing141

system and ignoring, e.g., time-lagged response to radiative forcing, or the impact of short-142

lived aerosols and nonlinear feedbacks like those from melting ice. However, there are143

also more sophisticated models that can be used. Thus at a later time we can rely on144

Simple Climate Models (SCMs, e.g. Meinshausen et al. (2011); Lembo et al. (2020); Leach145

et al. (2021); Bouabid et al. (2024); Dorheim et al. (2024)) to translate arbitrary emis-146

sion pathways into novel trajectories of global mean temperature (other than the one rep-147

resented by the ESM runs we used for training) which can drive realizations of spatially148

resolved monthly temperatures and humidity under new scenarios of future emissions.149

This procedure is in line with the precedent among other emulators of spatially-resolved150

climate variables, which are commonly conditioned on global mean temperature (e.g.,151

Osborn et al. (2016a); Alexeeff et al. (2018); Goodwin et al. (2020)). For example, pat-152

tern scaling conditioned on global mean temperature has been shown to predict region-153

ally resolved ensemble mean temperature (Lütjens et al., 2024). We comment that of-154

ten the global mean temperature anomaly is used rather than the actual global mean155

temperature, but here we will use the global mean temperature.156

Our paper is organized as follows: In Section 2, we introduce the dataset used in157

this work. Section 3 discusses the Gaussian assumption and coarse-graining procedure.158

In Section 4 we discuss the details of the emulator and the regression problem. In Sec-159

tion 5, we show the emulator’s ability to replicate the data’s statistics under climate change.160

Finally, in Section 6, we discuss the broader implications of this work and propose fu-161

ture directions for constructing complementary emulator models.162
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Figure 1. Global mean temperature in the MPI-ESM1.2-LR ensemble. Each dashed line rep-

resents one of 50 ensemble members, and the solid line shows the ensemble mean. Different colors

correspond to the historical 1850–2014 period (maroon) and the three future scenarios considered

in this study: SSP5-8.5 (red), SSP2-4.5 (pink), and SSP1-1.9 (purple). The future period spans

2015–2100. The historical period lasts 165 years, and the future period—86 years.

2 Data163

We use the output from the MPI-ESM1.2 LR (v1.2.01p7) ESM model (Mauritsen164

et al., 2019), which contributed to CMIP6. We chose this model because of its large num-165

ber of simulations (ensemble members) run for each emission scenario: 50 simulations166

are run for each scenario, differing only in their initial conditions. A large ensemble is167

necessary to separate the model’s internal variability from the anthropogenic signal (Collins168

& Allen, 2002; Tebaldi, Dorheim, et al., 2021). In the CMIP6 model set, only three ESMs169

submitted ensembles of 30 or more members: MPI-ESM1.2-LR, EC-Earth3, and CanESM5.170

Among these, the MPI model is the only one with an equilibrium climate sensitivity to171

greenhouse gas emissions within the “likely” range determined by multiple lines of ev-172

idence (Hausfather et al., 2022) and with the entire ensemble available for open down-173

load. This is the same dataset used in Lütjens et al. (2024).174

Each MPI-ESM1.2 ensemble member is run for the historical period, spanning 165175

years between 1850–2014, and for various future warming scenarios spanning the 86-year176

future period 2015-2100. We consider output from three future scenarios from the Sce-177

narioMIP experiments: SSP5-8.5, SSP2-4.5, and SSP1-1.9. The ScenarioMIP experiments178

are plausible futures corresponding to different climate mitigation and cooperation nar-179

ratives (O’Neill, Tebaldi, van Vuuren, et al., 2016; Tebaldi, Debeire, et al., 2021). Fig-180

ure 1 reports the global mean temperature profiles of the historical period and the three181

future scenarios considered in this work for each of the 50 MPI-ESM1.2-LR ensemble mem-182

bers. We select the historical experiment and the SSP5-8.5 high-warming scenario for183

training the emulator because together they span the widest range of global mean tem-184
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Figure 2. Statistics of Surface Temperature Global Averages and Selected Loca-

tions for SSP1-1.9 at years 2020±2 and 2095±2. Here, we show the surface temperature his-

tograms of the SSP1-1.9 scenario corresponding to similar global mean temperatures (T g = 289.3

K) but different points in time. The histograms overlap, lending credence to parameterizing the

distributional change for a fixed month with T g.

peratures. This leaves SSP2-4.4 and SSP1-1.9 as the validation sets for regression, see185

Section 4.2.186

Our goal is to develop an emulator that predicts the changes in the multivariate187

probability density function of climate fields as a function of emissions. The first step188

in the process is to instead represent the distributions as a function of (or, more appro-189

priately, conditioned on) global, ensemble, and yearly mean temperature and hence cu-190

mulative emissions (see Masson-Delmotte et al. (2021). Following standard practice, we191

will refer to global, ensemble, and yearly mean surface temperature as “global mean tem-192

perature” throughout the text.193

To presume that time-dependent climate statistics for different emissions scenar-194

ios can be parameterized by a state-dependent (time-independent / history-independent)195

scalar quantity is a strong assumption but one that is justified a-posteriori for the cases196

considered in this work, see Figure 2 and, later on, Figures 9 and 10. In symbols, we as-197

sume that the statistics of climate system fields, in our case the EOF model amplitudes198

a ∈ ℓ2 (countably infinite), can be represented by a probability density for every pos-199

sible state, with time and emissions history replaced by the global mean temperature T g200

and seasonal information such as the month m:201

ρ(a, t|emissions) → ρ(a|T g,m). (1)

The hope is that conditioning on global mean temperature serves as an informative para-202

metric form to characterize the changing distribution of the climate relevant quantities.203

Our formulation is well-posed. If no functional form relates T g to a particular observ-204

able of the climate system, the probabilistic description implies that the conditioning in-205

formation is uninformative. Thus, in the worst-case scenario, the conditional informa-206

tion reduces to the distribution, e.g., ρ(a|T g,m) → ρ(a|m). In such cases, our task is207

to find additional quantities that yield informative distributions.208

We illustrate our approach for monthly mean surface (2m) temperature and monthly209

mean surface (2m) relative humidity. These variables are the ‘tas’ and ‘hurs’ variables210

in the CMIP6 nomenclature. The MPI-ESM1.2 LR model has a horizontal resolution211

in the atmosphere of 1.8°. We use the model output on its 192 × 96 lat-lon grid. The212
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emulator is conditioned on globally averaged ensemble mean surface temperature, which213

we calculate from the 2m temperature variable.214

Our approach is purely data-driven and should not be used to extrapolate statis-215

tics outside its global mean temperatures training range. We use the two additional fu-216

ture scenarios to test the emulator performance: SSP2-4.5, which features milder mono-217

tonic warming that levels off at the end of the century (elimination of emissions), and218

SSP1-1.9, which features a peak in global mean temperature around mid-century followed219

by a decrease to end-of-historical-period temperatures by 2100 (as a consequence of neg-220

ative emissions), (see Fig. 1). Because we are developing an emulator conditioned only221

on global mean temperature from a scenario with exponentially increasing emissions (with-222

out accounting for emissions history or other memory effects), it is important to test its223

performance in scenarios with non-monotonic emissions, which are also of ever-increasing224

interest to mitigation and adaptation studies and policy.225

3 Multivariate Gaussian Assumption and Coarse-Graining226

Assuming that our data can be approximated as multivariate Gaussian random vari-227

ables for every grid point for any given global mean temperature is an unrealistic assump-228

tion. Still, it is ameliorated by working with monthly and spatially averaged variables229

from whence a Gaussian distribution would follow from sufficient averaging and the mul-230

tivariate central limit theorem (Hasselmann, 1976). To substantiate this ansatz, we lever-231

age evidence from the literature that spatially coarse-grained and monthly mean tem-232

peratures follow a Gaussian distribution (e.g., Schär et al. (2004); Hansen et al. (2010);233

Schneider et al. (2015); Falasca, Basinski-Ferris, et al. (2024); Falasca, Perezhogin, & Zanna234

(2024)). We also emulate surface relative humidity (RH) statistics to future climates,235

because of its relevance for climate adaptation and impact studies (T. Matthews, 2018).236

Our multivariate Gaussian assumption applies better to smoothly varying variables like237

temperature and relative humidity but less so for variables like precipitation, which have238

a much more nonlinear response to temperature fluctuations and non-Gaussian statis-239

tics (Legates, 1991).240

In this work, we choose to coarse-grain the representation of our fields with Em-241

pirical Orthogonal Functions (EOFs). The EOF decomposition has been used in previ-242

ous emulator work for both dimensionality reduction (P. B. Holden & Edwards, 2010;243

P. B. Holden et al., 2015; Yuan et al., 2021) and more generally as a method of gener-244

ating an uncorrelated projection basis (Link et al., 2019). More recently, Falasca, Perezhogin,245

& Zanna (2024) has demonstrated how modal amplitudes of EOFs (under the assump-246

tion that they can be approximated as multivariate Gaussian distributions) can be used247

to interpret patterns of variability and teleconnections recovered by data-driven approaches.248

We compute the EOF basis through a singular value decomposition of our data in249

the historical period of one of the ensemble members. The resulting basis constitutes 165×250

12 EOFs ordered by the magnitude of the singular values. We discard the latter 980 ba-251

sis functions, leading to a total of 1000 basis functions. We use the same basis set ev-252

ery month and compute EOFs separately for each variable of interest. We project data253

from every scenario and every ensemble member onto our original basis.254

At this point, we return to our assumptions about the multivariate Gaussian na-255

ture of coarse-grained representations of our system. We show in Figure 3 the distribu-256

tions of EOF modes at selected locations of surface temperature in purple, chosen from257

a subset of the historical period of the MPI ensemble with similar global mean temper-258

atures. The figure illustrates the four most “non-Gaussian” modes/locations and one “most259

Gaussian” mode/location. Specifically, the modes and locations were selected by con-260

structing histograms for every location and mode, finding the locations/modes with the261

most positive/negative kurtosis and skewness (four total) and one location with skew-262
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ness and kurtosis closest to zero. In addition, we anticipate the result section and show263

the result of the emulator prediction for the statistics in blue.264

We see from Figure 3 that even the most “non-Gaussian” EOF coefficients (top row)265

display a familiar bell-shaped curve, whereas the different locations for pointwise statis-266

tics display non-Gaussian features (bottom row). A subtle point now arises. All distri-267

butions of the EOF coefficients appear to be quasi-Gaussian. Furthermore, point statis-268

tics can be reconstructed from the EOF mode statistics and the EOF basis through a269

linear sum. Lastly, sums of Gaussian random variables are Gaussian. Reconciling these270

three facts with the non-Gaussian point statistics of the bottom row in Figure 3 requires271

non-Gaussian higher-order correlations between the different EOF modes. These non-272

Gaussian correlations ought to be captured to emulate the tails of the distributions at273

a location and this could be achieved with other data-driven methods such as “score-matching”274

or Markov models, see Souza (2023); Giorgini et al. (2024); Bassetti et al. (2023); Chris-275

tensen et al. (2024). Here we focus on robust spatially coarse-grained statistics. As we276

will show, this focus allows us to ignore these non-Gaussian correlations. We return to277

this point later in the manuscript in Section 5, where we show that, despite the existence278

of non-Gaussian correlations, the bulk of the pointwise statistics are captured by the em-279

ulator.280

Our thought process is as follows: Coarse-grained features constitute the most pre-281

dictable aspects of the climate signal. As such, finer-scale details, such as temperature282

distributions at a point, are better modeled using different approaches, such as down-283

scaling from coarse-grained information. It is therefore useful to express the climate state284

as a set of model amplitudes a where the vector itself can be decomposed into modes285

corresponding to large scale coarse structures aC and “fine scale modes” aF . We then286

decompose the probability distribution for climate variables (for a fixed global mean tem-287

perature T g and month m) as288

ρ(aC ,aF |T g,m) = ρ(aF |aC , T g,m)ρ(aC |T g,m). (2)

Our work focuses on the approximation ρ(aC |T g,m) ≈ N (µ(T g,m),C(T g,m)), where289

the coarse statistical variables aC are approximated as a Gaussian distribution, given290

by the symbol N , with means µ and covariances C conditioned on the global mean tem-291

perature T g and month m. Approximating fine-scale structures conditioned on larger292

coarse-grained variables, i.e., approximating ρ(aF |aC , T g,m), is left to future work. In293

particular, we surmise that294

ρ(aF |aC , T g,m) ≈ ρ(aF |aC), (3)

i.e., information about the coarse scales may be sufficiently informative to parameter-295

ize the distribution of the fine scales.296

4 Regression297

After projecting the ESM data into the EOF space, we model the EOF coefficients298

as a function of global mean temperature. Our approach is similar to that of P. B. Holden299

& Edwards (2010), which builds upon Bruckner et al. (2003). In P. B. Holden & Edwards300

(2010), the authors fit polynomial functions to EOF coefficients to emulate the annual301

temperature response to radiative forcing. They also assume a prior form for the shape302

of the ensemble distribution of yearly temperatures and use Bayesian estimation to em-303

ulate the ensemble variability. Instead, we model the EOF coefficients as multivariate304

Gaussians, which allows us to emulate both the mean and variability of the model di-305

rectly. In other words, we model the system’s statistics as a Gaussian process. We also306

model the EOF coefficients for each month separately, allowing for the emulation of monthly-307

resolution data.308
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Figure 3. Statistics of Surface Temperature EOF Modes and Selected Locations.

In purple, we show the histograms of data collected over the historical period of the MPI ensem-

ble with similar global mean temperatures, and in blue, we show the fit as given by the emulator

described in this work. The EOF amplitudes populate the top row, and the bottom row consti-

tutes point locations. The locations and modes were selected according to their Gaussian/non-

Gaussian behaviors. The most Gaussian cases are Mode 412 and location 99.39◦,−0.94◦.

Our work also shares some similarities with Nath et al. (2022), in which the au-309

thors augment an existing annual-average emulator with Gaussian processes to model310

monthly variability. In contrast, we make use of a Karhunen-Loève expansion to model311

the EOF coefficients as described in Fontanella & Ippoliti (2012) and assume Gaussian-312

ity in consideration of temporal (monthly) and spatial (EOFs) averaging. This approx-313

imate Gaussianity is motivated by the multivariate version of the central limit theorem,314

per Hasselmann (1976). Explicitly, we are not doing Gaussian Process Regression (Williams315

& Rasmussen, 1995), which requires making assumptions on the covariance structure of316

a kernel. Our assumption is that a finite rank approximation suffices to describe the co-317

variance kernel and that the EOF basis functions serve as the eigenvectors of the covari-318

ance kernel. The method described herein can also be applied to variables that do not319

satisfy the Gaussian assumption if one is instead concerned with data over a larger pe-320

riod of time (M. Wang and T. Sapsis, personal communication, September 19, 2024). Fi-321

nally, we emphasize that our method is data-driven and applies to any variables that meet322

the above mentioned criteria in Section 2.323

We now describe our emulation approach in detail. Section 4.1 describes the pro-324

cedure for fitting to data, and Section 4.2 describes how to utilize the emulator and its325

relation to pattern-scaling.326

4.1 Gaussian process emulator327

Following the training data’s EOF-based dimensionality reduction, we develop and328

train a Gaussian process-based stochastic emulator of regional monthly temperature and329

relative humidity fields. As stated previously, the set of EOF coefficients â is modeled330

as multivariate Gaussian331

â ∼ N (µ̂(T̄g,m), Ĉ(T̄g,m)). (4)

as a function of global mean temperature T g and the month index m. Since each month332

is modeled separately, we will drop the subscript m with the implicit understanding that333

any regression is for a fixed month. The large ensemble MPI model offers a robust way334

to estimate the means and covariances since we view, for a fixed month and year, an in-335
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Figure 4. Surface Temperature EOF Amplitude Mean and Covariance Regression

as a Function of Global, Ensemble, Yearly Mean Temperature in January. We show

the projected and computed data of the MPI ensemble (purple) and the emulator fit (blue). We

see that the fit to data captures overall trends.

dividual ensemble member of the MPI model as a realization of a multi-variate Gaus-336

sian distribution parameterized solely by the month and global mean temperature.337

Throughout this work, we use the notation ·̂ to denote an emulator-derived esti-338

mate of a quantity, in contrast to the ESM-derived “ground truth”. The dependence of339

the means µ̂ on T̄g is modeled as a linear function340

µ̂ = µ̂0 + µ̂1T̄g. (5)

Higher-order polynomial fits or neural networks could be used to improve on the results341

presented here but may also overfit the data.342

Modeling the covariance of the EOF coefficients as a function of global mean tem-343

perature requires more care. When fitting the mean of each EOF mode, one could use344

standard methods for curve fitting, such as least squares. Parameterizing a covariance345

matrix as a function of global mean temperature is more subtle since all the matrix en-346

tries must conspire together to yield a symmetric positive definite matrix. Our first at-347

tempt at solving this problem failed: fitting a linear function for each entry of the co-348

variance matrix as a function of global mean temperature does not produce a positive349

definite matrix.350

Our second attempt was to represent the dependence of the covariance matrices351

Ĉ on T̄g as352

Ĉ = L̂L̂T and L̂ = L̂0 + L̂1T̄g. (6)

This functional form guarantees that Ĉ is symmetric positive definite because it is rep-353

resented indirectly via L̂, the product of a matrix and its transpose. In one dimension,354

this functional form represents the standard deviation as a linear function in global mean355

temperature T g. In Equation 6 each entry of L̂ is modeled as a linear function of T̄g, lead-356

ing to a quadratic model for the covariance:357

Ĉ(T g) = L̂0L̂
T
0 +

(
L̂0L̂

T
1 + L̂1L̂

T
0

)
T̄g + L̂1L̂

T
1

(
T̄g

)2
. (7)

As with the means, it is possible to go beyond a linear representation for L̂.358

However, it proved challenging to properly represent L̂0 and L̂1. We first performed359

linear regression on each entry of L̂ by computing a Cholesky factorization of Ĉ, e.g. rep-360

resenting Ĉ = L̂L̂T , see Trefethen & Bau III (1997). This procedure led to inaccurate361
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estimates of C; in particular, the method underestimated the variance of the higher EOF362

modes.363

The methodology that gave the highest fidelity results was formulating (and solv-364

ing) an optimization problem. Thus, to find L̂0 and L̂1 we minimized the loss function365

loss(L̂0, L̂1) =
∑
T̄g

∥Ĉ(T̄g) − C(T̄g)∥2, (8)

where Ĉ is given by Equation 7 and ∥·∥ is an appropriately chosen norm. In our case,366

we used a Frobenius norm (minimizing the square distance between each matrix entry),367

but other choices would likely yield good answers as well. This minimization was per-368

formed in JAX, Bradbury et al. (2018), on an H100 Nvidia GPU using automatic dif-369

ferentiation and Kingma & Ba (2014)’s “ADAM” for optimization. The initial guess for370

iteration was a constant covariance matrix, i.e., C = 1
251

∑2100
year=1850 C(year). This choice371

was implemented by taking L̂1 = 0 and obtaining L̂0 from the Cholesky factorization372

of C. To perform the regression for the covariance matrix, we used the fact that the co-373

variance can be computed separately for each year, and each year has an associated global374

mean temperature.375

We illustrate the result of the regression procedure for surface temperature in Fig-376

ure 4. The top row represents the regression for the ensemble mean EOF coefficients,377

and the bottom row shows the regression problem for the covariance matrix between EOF378

modes, both for January. We first describe the top row. The purple dots are the pro-379

jected modal amplitudes for a few sample EOFs at each year for all ensemble members380

of the MPI data for the historical and SSP5-8.5 scenario. The bottom row is obtained381

by calculating the covariance between sample modal amplitudes each year separately us-382

ing all ensemble members. These data are then regressed against each year’s global, en-383

semble, and temporal mean of surface temperature. From Figure 4, we see that the trends384

are well captured by performing the regression (blue). As mentioned before, we use a385

linear model for the mean of the EOF coefficients and consistently a quadratic fit for the386

entries of the covariance matrix. The covariance data are much noisier but still display387

overall trends captured through the regression process.388

4.2 Using the Emulator and Relation to Pattern Scaling389

Upon performing the dimensionality reduction and the regression problem, we can390

reconstruct spatial fields for a fixed month m and global mean temperature T g by mak-391

ing use of the basis functions and representing a field such at surface temperature T as392

T̂ (x) =

N∑
i=1

âiϕi(x) (9)

where â ∼ N (µ̂(T g,m), Ĉ(T g,m)) are the EOF coefficients sampled from a multivari-393

ate Gaussian distribution and ϕi(x) are our EOF basis functions. The ensemble aver-394

age of T̂ for a fixed location x is given by395

⟨T̂ (x)⟩ =

N∑
i=1

µ̂iϕi(x) (10)

and the variance at a point x is given by396

⟨T̂ (x)2⟩ − ⟨T̂ (x)⟩2 =
∑
ij

Ĉijϕi(x)ϕj(x). (11)

In fact, for any linear functional L acting on the temperature field T̂ , e.g., a spatial av-397

erage / zonal average for a fixed latitude / fixed location / average of a patch of land398
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such as North America or Africa, we have that the ensemble average and variance is given399

by400

⟨L[T̂ ]⟩ =

N∑
i=1

µ̂iL[ϕi] and ⟨L[T̂ ]2⟩ − ⟨L[T̂ ]⟩2 =
∑
ij

ĈijL[ϕi]L[ϕj ]. (12)

Thus, the mean and variance of any linear function of temperature can be computed from401

the mean and covariance of all the EOF coefficients and the action of the linear func-402

tional on the basis functions. Similarly, any higher-order statistics can be computed by403

using the Gaussian assumption for the EOF amplitudes. Equation 12 illustrates that the404

entire covariance structure of the EOF amplitudes is key to compute temperature statis-405

tics beyond the mean.406

It is instructive to compare our approach to linear pattern scaling. Linear pattern407

scaling predicts the temperature at every location as a linear function of the global, yearly,408

and ensemble-averaged temperature Santer & Wigley (1990). If we sum over all EOF409

modes our emulator for temperature at a location is given by,410

⟨T̂ (x)⟩ =

N∑
i=1

µ̂iϕi(x) =

N∑
i=1

(µ0,i + T gµ1,i)ϕi(x) (13)

=

N∑
i=1

µ0,iϕi(x) + T g

N∑
i=1

µ0,iϕi(x) ≡ T0(x) + T gT1(x) (14)

where411

T0(x) =

N∑
i=1

µ0,iϕi(x) and T1(x) =

N∑
i=1

µ1,iϕi(x). (15)

This confirms that our emulator does indeed reduce to linear pattern scaling for the sur-412

face temperature at a location.413

It may be argued that the linear pattern scaling approach can also be used to pre-414

dict any functional of temperature at each location as a linear function of the global, yearly,415

and ensemble-averaged temperature. However a new linear fit must be computed for any416

statistics of interest. The advantage of our emulator is that we can reconstruct any statis-417

tic of the field in question from the mean and covariance estimates in so far as the Gaus-418

sian assumption is satisfied. Pattern scaling would fail to do so since calculating the vari-419

ance of a spatial average (for example) requires knowing correlations between different420

points.421

To demonstrate that our Gaussian process emulator reduces to a form of a linear422

pattern scaling emulator for temperature at a location, we plot the yearly and ensemble-423

averaged global temperature emulation error as a function of time for an increasing num-424

ber of modes (10, 100, 1000). At each time along the horizontal axis the errors are com-425

puted with respect to T g computed from the MPI ensemble for the year in question. We426

compare the error of performing linear regression pointwise on the ensemble mean in the427

historical periodic and SSP5-8.5 to the ensemble mean of our Gaussian process emula-428

tor in Figure 5. We re-emphasize that the training for both emulators is performed on429

the historical period and SSP5-8.5, whereas our “test” is with respect to SSP1-1.9 and430

SSP2-4.5. We do not use a “validation” dataset in the present case since our regression431

does not have any hyperparameters to tune. In formulas, we are comparing (for each year)432

temporal error(⟨T ⟩t,ω, ⟨T̂ ⟩t,ω) =

√
1

4π

∫ 2π

θ=0

∫ π

ϕ=0

|⟨T ⟩t,ω − ⟨T̂ ⟩t,ω|2 sin(ϕ)dθdϕ, (16)

where ⟨·⟩t,ω to denotes an ensemble and yearly average and the spatial average is taken433

over the Earth’s sphere. As we increase the number of modes, the error in the approx-434

imation becomes similar to the pointwise error when utilizing pattern scaling. A few modes435
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Figure 5. Regression Error for Ensemble and Yearly Averaged Surface Temper-

ature as a Function of Time for Different Scenarios. Different colors correspond to the

historical 1850–2014 period (maroon) and the three future scenarios considered in this study:

SSP5-8.5 (red), SSP2-4.5 (pink), and SSP1-1.9 (purple). The future period spans 2015–2100. The

historical period lasts 165 years, and the projected period—86 years. We show the RMS error of

pattern-scaling on the left and increasing the number of modes used in the emulator in the sub-

sequent rightward panels. As we increase the number of modes, the error in capturing pointwise

statistics decreases.

corresponding to large-scale patterns cannot represent the ensemble mean’s spatial struc-436

ture in scenarios outside the historical period. This error is due to a combination of two437

factors. The basis functions are constructed over the historical period, and secondly, even438

though we fit SSP5-8.5 data for the EOF amplitudes, there is less data corresponding439

to warmer temperatures. Thus, the emulator underperforms where it has seen fewer data.440

With more modes (and hence a more complete basis for representing functions), we see441

that the generalization error of going to different SSP scenarios matches the error of the442

historical period.443

To understand the spatial distribution of error, we average the absolute difference444

between our emulator predicted mean and the ensemble average of the data over the his-445

torical period, SSP5-8.5, and SSP1-1.9 in Figure 6. In formulas, this is446

spatial error(⟨T ⟩t,ω, ⟨T̂ ⟩t,ω) =
1

scenario duration

∫ scenario end

scenario start

|⟨T ⟩t,ω − ⟨T̂ ⟩t,ω|dt. (17)

In all cases, most of the average error comes from the high latitudes. There are also ad-447

ditional significant errors over Africa, India, and the southeast tip of Australia. Over-448

all the spatial errors look similar in the future scenario cases. We expect the errors in449

spatial patterns to change upon using nonlinear regression for the mean or a different450

set of basis functions; however, the error can perhaps be traced to a physical origin as451

the disappearance of sea ice in the northern hemisphere and desertification.452

While these error estimates are commonly used in the assessment of emulators, they453

are quite limited. In the next section we illustrate that a major advantage of our em-454

ulator is its ability to quantify the significance in shifts in the distributions of climate455

variables as a function of global mean temperature.456

5 Results457

As stated in the previous section, it is possible to reconstruct spatial statistics of458

any observable of our system with simplified formulas for linear functionals of our state.459
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Figure 6. Average Regression Error for Ensemble and Yearly Averaged Surface

Temperature as a Function of Space for Different Scenarios. We show the temporal

average error for each point in four cases: the historical period (top left), SSP5-8.5 (top right),

SSP1-1.9 (bottom left), and SSP2-4.5 (bottom right). The maximum temperature difference in

the time period 2015 to 2100 in SSP5-8.5 and SSP1-1.9 is 3.4 K and 0.3 K, respectively. For

SSP2-4.5, the maximum temperature difference in the time period 2015 to 2100 is 1.4 K
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Figure 7. Spatially Coarse Emulator Statistics. The purple color indicates data com-

ing from the MPI model over the historical period with similar global mean temperatures, and

in blue, the emulator prediction. The top panel shows the ensemble mean and variance of the

zonally averaged surface temperature field at each latitude, where the shading corresponds to

three standard deviations. In the bottom panel, we show histograms at several fixed latitudes

and compare the empirical distribution of the MPI data to the emulator prediction.

In particular, the statistics of the zonal average at a fixed latitude for temperature in460

January are reconstructed in Figure 7 for a range of similar global mean temperatures461

taken over the historical period (to have higher fidelity statistics). The purple colors in-462

dicate data from the MPI model, and the blue represents the Gaussian emulator. In the463

top row, the data’s zonal average mean and variance (left) are reconstructed well using464

the model (right). The two distributions look nearly identical in mean and variance. This465

similarity should not be taken for granted, since regression is performed on the mean and466

covariance of the EOF amplitudes rather than the averages directly. Furthermore, when467

we check the histograms for the zonal average at different latitudes (bottom row), we see468

that the distributions are well-represented by Gaussian distributions. The emulator’s abil-469

ity to capture the zonally averaged statistics surface temperature at each latitude comes470

directly from the representation of the covariance structure between EOF amplitudes,471

as necessitated by Equation 15. This test serves as an indirect validation of using mul-472

tivariate Gaussian statistics for the EOF coefficients.473

Since our emulator captures each month separately, we can investigate a-posteriori474

shifts in the ensemble average seasonal temperature cycle. In Figure 8, we show the em-475

ulator prediction for the the seasons for the upper and southern hemisphere averages sep-476

arately, where the blue corresponds the historical period and the orange corresponds to477

the end of the SSP5-8.5 scenario. The amplitude of seasonal variation changes by ap-478

proximately one Kelvin in the northern hemisphere and is smaller in the southern hemi-479

sphere. This asymmetry reflects the larger fraction of land in the northern hemisphere480

(land warms more than the ocean because it is drier and less efficient at cooling through481

latent heat release.)482

Until now, we have focused on surface temperature statistics, but applying the method-483

ology to other variables is straightforward. As an example we apply the method to sur-484

face relative humidity. We show the emulator prediction and the MPI data in the top485

row of Figure 9 for two of the twelve months. In the top row, we show spatial averages486
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Figure 8. Monthly Emulator Output for Global Quantities. We show the emulator

prediction for the global average (left), upper-hemisphere average (middle), and lower-hemisphere

average (right), as well as two global mean temperatures, T g = 288(K) (blue) and T g = 293(K)

(orange). The solid line indicates the ensemble average, and the shaded region indicates three

standard deviations. We see a shift in the seasonal cycle for a warmer climate.

of surface temperature and, in the bottom row, spatial averages of relative humidity. Ac-487

counting for the internal variability of the system helps us distinguish whether or not488

there are significant shifts due to climate change. For temperature, we see that the dis-489

tribution shifts are outside the climate system’s natural variability. In contrast, despite490

minor changes in the mean value, relative humidity is relatively unchanged when account-491

ing for internal variability during January, while in July there is a more significant shift.492

The shifts are in accordance with the expectation that relative humidity will decrease493

over land in a warmer climate and increase over the ocean (Byrne & O’Gorman, 2016).494

In addition, we can reconsider the assumptions of pointwise Gaussian statistics and495

see if global warming trends are captured for the pointwise statistics in Figure 10. For496

both temperature (top row) and relative humidity (bottom row), we see that, although497

the distribution shape is not well-approximated as Gaussian for some of the selected points,498

the trends in shifts of means and variances are well captured. Furthermore, we see an499

apparent change in the shifts in pointwise temperature distributions, but less so for rel-500

ative humidity, where in all cases, the shifts in mean are well within the variance of in-501

ternal variability. The relative heights of the Gaussian distributions within a given panel502

offer a quick way to assess whether the variance has shifted. For example, there seems503

to be an increase in variance in the top left panel, and a decrease in variance in the top504

right panel.505

6 Conclusion506

We have demonstrated a novel probabilistic emulator and applied it to spatially507

resolved monthly averaged temperature and relative humidity. This emulator provides508

a computationally efficient method for extending the MPI-ESM-1.2-LR global climate509

model to arbitrary warming scenarios while retaining the ability to separate trends from510

internal variability.511

The Gaussian approximation serves as a foundational step, enabling us to repre-512

sent changes in distributions by describing changes in means and covariances. While this513

simplified parametric family is effective for coarse-grained variables, it can be extended514

to a more expressive form, such as through diffusion models, to capture more complex515

distributions, (Song et al., 2020). Indeed, as we consider higher-order correlations, the516

appeal of neural networks becomes evident. Estimating even the three-point correlation517

of a high-dimensional distribution becomes cumbersome, requiring the computation and518

storage of a tensor with 10003 points if one uses a basis of 1000 EOF amplitudes. Gen-519
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Figure 9. Distributional Shifts Under Climate Change for Land and Ocean Spatial

Averages. Here, we show the shift in distribution for the temperature field (top row) and rel-

ative humidity (bottom row) for the months of January and July, and a land and ocean spatial

average. We see that the emulator (solid line) captures the shift in mean and variance of the data

distributions (histograms).

Figure 10. Distributional Shifts Under Climate Change for Different Locations.

Similar to Figure 9, but for pointwise statistics at different locations on Earth. Even when the

distributions are non-Gaussian, the model represents the overall trend in mean and variances.
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erally, a multivariate distribution of size Nd necessitates the storage of (Nd)n points for520

an n-point correlation, which rapidly becomes intractable for large Nd or n; however, the521

added flexibility of using neural networks comes with a steep cost, necessitating larger522

training datasets, time, expertise, and computational resources. Furthermore, even a trained523

neural network can be slow for inference and our goal here was to create a computation-524

ally expedient emulator that works on today’s hardware.525

We found that coarse-grained statistics are more amenable to Gaussian represen-526

tation than point-wise statistics, making them a useful starting point for conditional in-527

formation. Earth System Models are expected to have significantly higher skill in rep-528

resenting coarse features than in capturing fine-scale details, reinforcing the utility of our529

approach. The emulator also benefits from a smaller memory footprint, whose dominant530

cost is storing EOF basis functions. In our work, the data reduction over the training531

dataset was over a factor of 100.532

Simple extensions of the emulator include representing different fields, using dif-533

ferent basis functions, using higher-order regression for EOF statistics, using more re-534

gression variables other than global mean temperature, capturing correlations between535

different fields, or capturing temporal correlations. The correlations between different536

fields can be represented by computing a joint EOF amplitude for quantities such as tem-537

perature and relative humidity or computing correlations between EOF coefficients af-538

ter the fact. Lastly, temporal correlations between months can be calculated to emulate539

potential trajectories under a Gaussian assumption. This latter avenue allows one to have540

a predictive model for monthly temperature transition probabilities using a conditional541

Gaussian distribution.542

While our emulator captures distributions only up to the second moment and thus543

is not suited for extreme events, it lays the groundwork for more specialized emulators.544

For example, one could condition a separate emulator on our monthly temperature out-545

puts to study extremes or non-Gaussian variables like precipitation. This approach would546

couple well with existing methods, such as Generalized Extreme Value distribution mod-547

eling or generative AI, allowing for rapid emulation of climate extremes in future sce-548

narios. Similar work has been done in Bassetti et al. (2024). A potential ecosystem of549

emulators is illustrated in Fig. 11. The hierarchy is to first develop a model for a pre-550

dictive variable for characterizing climate change, such as global mean temperature, us-551

ing cumulative emissions. The second step is to use an emulator for coarse-grained vari-552

ables such as the work described here. The last step would be using a downscaling ap-553

proach for finer-grained statistics. However some limitations to this pipeline should be554

acknowledged. First, it makes it difficult to capture the impact on global mean temper-555

ature of emissions with local rather than global impacts, like aerosols. Second, it assumes556

that all regional variables can be inferred from global mean temperature which is clearly557

an oversimplification.558

The emulator described in the manuscript aims to learn the trends and internal vari-559

ability of the climate system as represented by a particular ensemble of global climate560

model simulations. We do not delve into the accuracy of this ensemble compared to ob-561

servations. However, note that our model-trained emulators can be used as priors to be562

further trained with available observations to remove model bias. While we chose the563

MPI model due to its large ensemble size, the methodology applies to any model with564

a sufficiently large ensemble.565
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