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Abstract

We describe CATKE, a parameterization for fluxes associated with small-scale or “microscale’ ocean turbulent mixing on scales

between 1 and 100 meters. CATKE uses a downgradient formulation that depends on a prognostic turbulent kinetic energy

(TKE) variable and a diagnostic mixing length scale that includes a dynamic convective adjustment (CA) component. With its

dynamic convective mixing length, CATKE predicts not just the depth spanned by convective plumes but also the characteristic

convective mixing timescale, an important aspect of turbulent convection not captured by simpler static convective adjustment

schemes. As a result, CATKE can describe the competition between convection and other processes such as shear-driven

mixing and baroclinic restratification. To calibrate CATKE, we use Ensemble Kalman Inversion to minimize the error between

21˜large eddy simulations (LES) and predictions of the LES data by CATKE-parameterized single column simulations at three

different vertical resolutions. We find that CATKE makes accurate predictions of both idealized and realistic LES compared to

microscale turbulence parameterizations commonly used in climate models.
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Key Points:9

• We describe a new parameterization called CATKE with a convective adjustment10

(CA) component and prognostic turbulent kinetic energy (TKE).11
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idealized large eddy simulations (LES).13

• We validate CATKE by interpreting its free parameters and comparing to additional14

idealized and realistic LES.15
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Abstract16

We describe CATKE, a parameterization for fluxes associated with small-scale or “microscale”17

ocean turbulent mixing on scales between 1 and 100 meters. CATKE uses a downgradient18

formulation that depends on a prognostic turbulent kinetic energy (TKE) variable and19

a diagnostic mixing length scale that includes a dynamic convective adjustment (CA)20

component. With its dynamic convective mixing length, CATKE predicts not just the depth21

spanned by convective plumes but also the characteristic convective mixing timescale, an22

important aspect of turbulent convection not captured by simpler static convective adjustment23

schemes. As a result, CATKE can describe the competition between convection and other24

processes such as shear-driven mixing and baroclinic restratification. To calibrate CATKE,25

we use Ensemble Kalman Inversion to minimize the error between 21 large eddy simulations26

(LES) and predictions of the LES data by CATKE-parameterized single column simulations27

at three different vertical resolutions. We find that CATKE makes accurate predictions28

of both idealized and realistic LES compared to microscale turbulence parameterizations29

commonly used in climate models.30

Plain Language Summary31

Turbulence is everywhere in the Earth’s ocean, from ephemeral swirls no bigger than32

a fingertip to gigantic eddies larger than Iceland. Ocean models used in climate studies33

simulate currents by dividing the ocean into grid cells between 10 and 100 kilometers wide.34

As a result, ocean models do a decent job simulating eddies that are significantly larger than35

a single grid cell. But models do far worse at incorporating the effects of eddies that are36

person- to building-sized — because these “microscale’ eddies are smaller than a grid cell and37

therefore must be represented more approximately. This is a problem because these small yet38

mighty eddies mix heat and carbon deep into the ocean, and thus help keep the atmosphere39

from getting too hot, and too rich in CO2. In this paper, we propose a new model component40

called “CATKE’ (pronounced kăt-kee) that does a decent job at approximately incorporating41

the effect of such relatively small ocean eddies in global ocean models. CATKE stands for42

“Convective Adjustment and Turbulent Kinetic Energy”. Basically, CATKE keeps track of43

the energy of small-scale turbulence — a measure of how vigorous it is, and thus how much44

it mixes the ocean — to predict ocean mixing rates.45

1 Introduction46

Vertical mixing by “microscale” ocean turbulence, with scales between 1 and 100 meters,47

is an important process affecting, for example, ocean uptake of atmospheric heat and48

carbon (Price et al., 1986; Large et al., 1994; Omand et al., 2015), the structure of the ocean49

interior (Luyten et al., 1983; Williams, 1991), and ocean circulation on decadal to millennial50

time-scales (Wunsch & Ferrari, 2004; Melet et al., 2022). In large-scale ocean models — from51

regional models covering tens of kilometers to global ocean models — microscale turbulent52

vertical fluxes are approximately modeled by parameterizations. Imperfect predictions by53

turbulence parameterizations contribute to biases in tropical sea surface temperature (G. Li54

& Xie, 2014), Southern Ocean boundary layer depth (Sallée et al., 2013; DuVivier et al.,55

2018), and water mass transformation rates (Groeskamp et al., 2019). These errors degrade56

the accuracy of climate projections that depend on accurate air-sea fluxes (sensitive to sea57

surface temperature, Large et al., 1994) and the effective heat capacity of the upper ocean58

(which scales with the boundary layer depth, Gregory, 2000; Held et al., 2010).59

This paper documents the development, calibration, and preliminary validation of a60

new parameterization for vertical mixing by ocean microscale turbulence. Our goal is to use61

the new parameterization in a GPU-based climate model that is automatically calibrated62

to observations, reports quantified uncertainties, and has an ocean component with a high,63

O(10 km) or finer resolution that fully resolves ocean mesoscale turbulence. The dynamical64

core of the GPU-based ocean component is described by Silvestri et al. (2024). In service of65
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this ultimate goal, the work documented in this paper prioritizes not just accurate predictions,66

but also efficiency on GPUs in high-resolution configurations. We also invest in automated67

calibration that constrains all of the parameterization’s free parameters to 21 large eddy68

simulations (LESs) simultaneously, accounting for the peculiarities of our specific numerical69

implementation of the parameterization in a single column model. The 21 LES we use to70

calibrate and the additional 14 LES we use to validate the parameterization are described in71

section 2.72

Our new parameterization, which we call “CATKE”, uses a downgradient formulation73

that estimates eddy diffusivities in terms of a prognostic turbulent kinetic energy (TKE)74

variable and a diagnostic mixing length with a novel dynamic convective adjustment (CA)75

component. CATKE is a “one-equation” model (because it includes an additional equation76

for TKE) that bears resemblance to a family of battle-tested parameterizations long used77

in European climate models (Gaspar et al., 1990; Blanke & Delecluse, 1993; Kuhlbrodt et78

al., 2018; Madec et al., 2017; Gutjahr et al., 2021; Jungclaus et al., 2022). One-equation79

downgradient parameterizations are appropriate for high-resolution ocean modeling and80

amenable to GPU performance optimization due to their spatially-local formulation. In81

contrast, the main benefit of “K-profile” schemes used in many global ocean models —82

accommodating hours-long time steps (Reichl & Hallberg, 2018) — is not realized in high-83

resolution simulations that require short time-steps anyways to resolve advection by mesoscale84

turbulence. Moreover, K-profile schemes achieve this time-step flexibility by solving nonlinear85

algebraic equations to determine boundary layer depth diagnostically (Large et al., 1994;86

Reichl & Hallberg, 2018; Reichl & Li, 2019), which may require significant optimization to87

achieve good performance on GPU-like systems (as experienced by Zhang et al., 2020). As88

for two-equation or “k–ϵ”-type models (Mellor & Yamada, 1982; Kantha & Clayson, 1994;89

Canuto et al., 2001; Umlauf & Burchard, 2003; Harcourt, 2015), CATKE is less expensive90

merely by having one fewer prognostic variable. The primary downside of any downgradient91

parameterization is unavoidable biases when instantaneously non-local, non-downgradient92

fluxes dominate, such as during free convection.93

We therefore devote special attention to free convection during CATKE’s formulation,94

which is described in section 3, to minimize this downgradient bias and assess its importance.95

Section 3.1.5 describes CATKE’s diagnostic convective length scale and primary novelty,96

which uses dimensional analysis (Deardorff, 1970) to predict the convective boundary layer97

depth in terms of the local TKE in order to estimate a dynamically evolving convective98

diffusivity. This improves on the constant “convective adjustment” diffusivity typically used99

with one-equation parameterizations in ocean climate models (typically 0.1m2 s−1; Madec100

et al., 2017; Gutjahr et al., 2021; Jungclaus et al., 2022), which cannot describe how the101

convective mixing rate varies with both boundary layer depth and the intensity of the102

destabilizing surface buoyancy flux over the wide range of conditions observed in Earth’s103

ocean. As a result, CATKE might be able to represent scenarios where mixing competes with104

other dynamics such as submesoscale restratification. We also implement different mixing105

lengths for momentum, tracer, TKE, and the TKE dissipation rate in shear-driven turbulence106

that all vary as a function of the local gradient Richardson number. This contrasts with107

typical approaches that estimate the TKE diffusivity as a constant multiple of the eddy108

viscosity (Blanke & Delecluse, 1993; Madec et al., 2017; Umlauf & Burchard, 2003), or which109

allow only the tracer mixing length to vary with Richardson number (Blanke & Delecluse,110

1993; Madec et al., 2017).111

CATKE’s formulation could not be realized without an effective method for constraining112

CATKE’s free parameters against observational or LES data. Section 4 describes how we113

calibrate CATKE’s free parameters by minimizing the error between 21 variously-forced LES114

and the predictions of the LES data made by forward CATKE-parameterized single column115

simulations. Because this calibration method is posed in terms of forward simulations, rather116

than an a priori analysis of parameters or isolated subcomponents of the parameterization,117

it is sometimes called “a posteriori” calibration (Duraisamy, 2021; Frezat et al., 2022).118

–3–
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Because a posteriori calibration computes errors based on simulated time-series, it can119

incorporate numerical errors that accumulate during time stepping and can leverage even120

indirect observational data if it can be computed from model output. For example, we121

leverage a posteriori calibration to specifically minimize CATKE’s dependence on vertical122

resolution. We solve the calibration problem using Ensemble Kalman Inversion (EKI; see123

Iglesias et al., 2013), which does not require gradients of the error with respect to free124

parameters.125

We validate CATKE by a variety of methods in section 5. We first diagnose quantities126

with known physical interpretations such as CATKE’s steady-state Richardson number and127

“similarity layer constant” (analogous to the von Kármán constant) in terms of CATKE’s128

calibrated free parameters, and assess their consistency with observations or other measure-129

ments. Second, we compare CATKE’s predictions versus idealized LES, both including those130

used in calibration and additional LES that are more strongly and more weakly forced than131

the calibration cases. In this way we test whether CATKE can reproduce the training data as132

well as CATKE’s capacity for extrapolation. Third, we compare CATKE predictions to LES133

of a long 34 day deep cycle turbulence case, which is forced by realistic winds, heat fluxes,134

salinity fluxes, solar insolation, and lateral flux divergences derived from a regional ocean135

model. This case illustrates CATKE’s ability to extrapolate to cases with time-dependent136

forcing. Fourth, we evaluate the sensitivity of CATKE’s predictions to vertical resolution137

and time-step size. After finding that CATKE can be sensitive to time steps longer than 1138

minute if the forcing is very strong and the vertical resolution is 1 meter or finer, we describe139

a split-explicit substepping scheme for turbulent kinetic energy that nearly eliminates time140

step sensitivity while preserving the ability to step forward momentum and tracers with a141

relatively long time step.142

We also compare CATKE to the K-profile parameterization (KPP; Large et al., 1994)143

and the second-moment closure of Langmuir turbulence (Langmuir Turbulence Second144

Moment Closure, or “SMC-LT”; Harcourt, 2015), which are implemented in the General145

Ocean Turbulence Model (GOTM; see Umlauf & Burchard, 2005; Q. Li et al., 2019). CATKE146

outperforms both of these in almost all cases — though the results must be taken with a147

grain of salt, because both KPP and SMC-LT have been calibrated to different data. Despite148

this caveat, the comparison contributes context to CATKE’s small but finite biases versus149

constant forcing LES.150

We conclude in section 6 with comments about future efforts to calibrate CATKE against151

more comprehensive data sets and future model development efforts to capture physics not152

considered in this work, such as the effect of surface wave fields that vary independently153

from winds and the modulation of turbulence by lateral density fronts. The most important154

piece of future work is the construction of a global calibration context to further calibrate155

CATKE’s free parameters against satellite and in-situ ocean observations.156

2 Large eddy simulations of turbulent mixing beneath surface waves157

We begin by concretely defining the parameterization problem that drives the cyclical158

process of formulating, calibrating, and validating CATKE. In this paper, the problem is159

posed by comparing high-fidelity and three-dimensional large eddy simulations (LES) of160

turbulent mixing with one-dimensional parameterized models for the horizontally-averaged161

dynamics of the LES. Our LES integrate the rotating, wave-averaged Boussinesq equations162

simplified for a steady surface wave field (Craik & Leibovich, 1976; Huang, 1979; Suzuki &163

Fox-Kemper, 2016),164

∂tU
L +

(
UL · ∇

)
UL +

(
f ẑ −∇×US

)
×UL +∇P = B ẑ + ∂tU

S + F u , (1)165

∇ ·UL = 0 , (2)166

∂tC +
(
UL · ∇

)
C = −∇ · Jc + Fc , (3)167
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where UL = (UL, V L,WL) is the Lagrangian-mean velocity, US is the Stokes drift associated168

with surface waves (which are always steady and oriented in the x̂-direction in this paper),169

P is Eulerian-mean pressure, B is Eulerian-mean buoyancy, f is the Coriolis parameter,170

F u is a momentum forcing term representing surface wind stress, C is any tracer such as171

temperature or salinity, and Fc is forcing term for C representing boundary conditions,172

solar insolation, and other other imposed body forcing. The Lagrangian-mean velocity UL
173

is defined as the sum of the Eulerian-mean velocity and Stokes drift, and setting US = 0174

reduces equation (1) to the ordinary Navier–Stokes equations. Note that we have neglected175

molecular diffusion from (1) and (3), as well as diffusion by a hypothetical LES closure, to176

simplify the ensuing discussion. In this work we use buoyancy B itself as a tracer, which is177

tantamount to using a linear equation of state with a single constituent.178

We conduct 35 LES of (1)–(3) forced by constant, horizontally-uniform fluxes of mo-179

mentum and buoyancy in a 512m× 512m× 256m horizontally-periodic domain with O(1m)180

resolution using Oceananigans (Ramadhan et al., 2020). All 35 LES are initialized with the181

same piecewise-constant density stratification given in equation A1, which has a weakly-182

stratified near-surface layer, a more strongly stratified middle layer, and a weakly-stratified183

lower layer. The surface momentum flux or “wind stress” τx is defined via F u in (1) as184

F u = −∂z [τx δ(z)] x̂ , (4)185

where δ(z) is a delta function concentrate at z = 0, such that negative stress τx < 0 forces a186

current in the +x-direction. Two types of buoyancy fluxes are used: a destabilizing surface187

flux Jb > 0 representing cooling or heat loss, which. isdefined via Fb in equation (3) via188

Fb = −∂z [Jb δ(z)] . (5)189

We also include 5 LES forced by both wind stress and stabilizing buoyancy forcing that190

represents heating by solar insolation. In these “sunny” cases, the flux divergence of buoyancy191

Fb is given by192

Fb = −∂zI , where I(z) = Jb

[
ϵ1e

z/λ1 + (1− ϵ1) e
z/λ2

]
. (6)193

In (6), I(z) is the buoyancy flux profile associated with penetrating solar insolation, Jb < 0194

is the surface solar insolation, ϵ1 is the fraction of penetrating radiation absorbed over the195

vertical scale λ1, and (1− ϵ1) is the remaining fraction absorbed over λ2. All simulations196

use ϵ1 = 0.6, λ1 = 1 m, and λ2 = 16 m (see for example the solar insolation used by Whitt197

et al., 2022).198

The forcing strength for each case is rationalized by categorizing the LES into 6-, 12-,199

24-, 48-, and 72-hour “suites” according to their duration. Because all the LES are initialized200

identically and run until the boundary layer is roughly half the depth of the domain, duration201

indicates forcing strength: the 6-hour-suite are the most strongly forced and the 72-hour202

suite simulations are the most weakly forced. The intermediately-forced 12-, 24-, and 48-hour203

suites are used for calibration. The 35 LES are divided into 5 “suites” with 7 cases each,204

according to their duration and the intensity of the surface fluxes: the 6-hour suite exhibits205

extreme forcing, while the 72-hour suite exhibits relatively weak forcing. Each suite consists206

of 7 physical scenarios that represent different forcing regimes:207

• “free convection”, which has pure destabilizing buoyancy forcing and no winds,208

• “weak wind strong cooling”,209

• “medium wind medium cooling”,210

• “strong wind weak cooling”,211

• “strong wind”, with no buoyancy forcing,212

• “strong wind no rotation” with no buoyancy forcing and f = 0.213

• “strong wind and sunny” with penetrative heating, wind forcing, and f = 0.214

–5–
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The “strong wind no rotation” and “strong wind and sunny” are non-rotating with f = 0,215

and the rest are rotating with Coriolis parameter f = 10−4 s−1. The range of buoyancy216

fluxes roughly corresponds to cooling between 156–2000 Wm−2 or heating by penetrating217

solar insolation between 104–1250 Wm−2, and the momentum fluxes correspond to 10-meter218

atmospheric winds of approximately 9–25 m s−1 and oriented in the x̂-direction. The fluxes219

associated with each case are summarized in tables 1 and 2.220

In any LES with wind forcing, we also include the effect of wind-driven surface waves221

through an estimate of ∂zU
S = ∂zU

S x̂ in (1) for equilibrium waves (Lenain & Pizzo, 2020).222

The equilibrium wave model depends on the peak wavenumber of the surface wave field,223

which is chosen so that the Langmuir number La is224

La
def
=

√
u⋆

US(z = 0)
≈ 0.3 , (7)225

close to the peak of its global distribution (Belcher et al., 2012). In (7), u⋆ is the friction226

velocity computed from the surface wind stress (here u⋆ =
√
|τx|, where τ = τx x̂ is the wind227

stress). All LES are initialized from rest with UL = 0. The LES also include a forced passive228

tracer, providing additional information about the time scales of mixing in the interior of229

the boundary layer. The initial density stratification, numerical methods, Stokes drift model,230

effects of including Stokes drift, and the sensitivity of the LES to resolution are described231

in Appendix A. Out of the 35 LES cases, 21 are used for calibration, while another 14 are232

reserved for validation. Figure 1 visualizes vertical velocity in 9 of the 35 cases.233

2.1 The single column context234

We would like to develop a model that can predict the horizontally-averaged momentum235

and buoyancy simulated by the LES. We therefore decompose all three-dimensional variables Ψ236

in (1)–(3) into a horizontally-averaged component ψ
def
= Ψ̄ and a fluctuation ψ′ such that,237

Ψ(x, y, z, t) = Ψ̄(z, t)︸ ︷︷ ︸
def
= ψ(z,t)

+ψ′(x, y, z, t) , (8)238

where the overline () denotes a horizontal average, and Ψ ∈ (UL, V L,WL, C) includes the239

velocity components UL, V L, WL, and tracer concentrations C. Note that the horizontal240

average of (2) and the horizontal homogeneity of our LES implies that wL = 0 and WL = w′
241

and thus the vertical momentum equation reduces to a statement of wave-modified hydrostatic242

balance. Figure 2 shows horizontally-averaged buoyancy, velocity, and kinetic energy profiles243

alongside a three-dimensional visualization of the buoyancy perturbation b′ for the 12-hour244

strong wind, weak cooling case.245

Next, we derive a set of equations that governs the horizontally-averaged zonal mo-246

mentum u(z, t), meridional momentum v(z, t), and any tracer c(z, t) by taking a horizontal247

average of (1) and (3) to obtain,248

∂tu− fv = −∂zw′u′ + F̄u , (9)249

∂tv + fu = −∂zw′v′ + F̄v , (10)250

∂tc = −∂zw′c′ + F̄c , (11)251

where u, v represent the horizontal average of the horizontal Lagrangian-mean velocities252

UL, V L, with superscript L is omitted to simplify the notation. Lateral fluxes vanish253

from (9)–(11) due to horizontal homogeneity. No terms Stokes-drift-dependent terms enter254

into (9)–(11) because US(z) is horizontally uniform. Figure 2 illustrates the horizontally-255

averaged buoyancy, velocity, and turbulent kinetic energy for the 12-hour strong wind, weak256

cooling case.257

The parameterization problem may now be stated: we seek a parameterization that258

predicts the vertical fluxes w′u′, w′v′, and w′c′ in terms of the resolved state u, v, c, boundary259

–6–
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Suite Case Jb (m
2 s−3) |τx| (m2 s−2) Q

(
W
m2

)
u10

(
m
s

)
12 hour free convection +4.8× 10−7 0 +1000 0

12 hour weak wind strong cooling +4.0× 10−7 4.0× 10−4 +833 15

12 hour mid wind mid cooling +3.2× 10−7 6.0× 10−4 +667 17

12 hour strong wind weak cooling +2.0× 10−7 8.0× 10−4 +417 20

12 hour strong wind 0 9.0× 10−4 0 21

12 hour strong wind no rotation 0 6.0× 10−4 0 17

12 hour strong wind and sunny −5.0× 10−7 9.0× 10−4 −1042 21

24 hour free convection +2.4× 10−7 0 +500 0

24 hour weak wind strong cooling +2.0× 10−7 3.0× 10−4 +417 13

24 hour mid wind mid cooling +1.6× 10−7 4.5× 10−4 +333 16

24 hour strong wind weak cooling +1.0× 10−7 5.9× 10−4 +208 17

24 hour strong wind 0 6.8× 10−4 0 18

24 hour strong wind no rotation 0 3.0× 10−4 0 13

24 hour strong wind and sunny −3.0× 10−7 4.5× 10−4 −625 16

48 hour free convection +1.2× 10−7 0 +250 0

48 hour weak wind strong cooling +1.0× 10−7 2.0× 10−4 +208 11

48 hour mid wind mid cooling +8.0× 10−8 3.4× 10−4 +167 14

48 hour strong wind weak cooling +5.0× 10−8 3.8× 10−4 +104 15

48 hour strong wind 0 4.5× 10−4 0 16

48 hour strong wind no rotation 0 1.6× 10−4 0 10

48 hour strong wind and sunny −1.0× 10−7 2.0× 10−4 −208 11

Table 1. Summary of surface boundary conditions for LES used to calibrate CATKE. All LES

are initialized with the buoyancy profile described in equation (A1) and use the Coriolis parameter

f = 10−4 s−1 except “strong wind no rotation” and “strong wind and sunny”, which use f = 0.

The “suite” indicates simulation duration. Jb is the surface buoyancy flux, τx is the kinematic

momentum flux (momentum flux divided by ocean reference density), Q ≈ ρocpJb/(αg) is the

heat flux associated with Jb, and u10 is an estimate of the 10-meter wind speed associated with

τx according to equation A4 using reference density ρo = 1024 kgm−3, seawater heat capacity

cp = 3991 J ◦C−1, thermal expansion coefficient α = 2 × 10−4 ◦C−1, gravitational acceleration

g = 9.81m s−2 are used for Q and u10. When the surface buoyancy flux is negative (Jb < 0),

Jb represents Jb = I(z = 0), where I(z) is the buoyancy flux associated with penetrating solar

insolation in equation 6. The forcing in equation (3) is then defined as Fb = −∂zI. All fluxes use

the convention that a positive flux carries quantities upwards, out of the ocean, which means a

negative τx drives currents in the + x̂ direction and a positive buoyancy flux cools the ocean by

extracting buoyancy. Additional LES used to validate CATKE are summarized in table 2.

–7–
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Figure 1. Visualization of vertical velocity in 9 of 35 large eddy simulations (LES) of the ocean

surface boundary layer used in this paper, forced variously by winds, surface waves, and heat fluxes.

All LES, which are summarized in tables 1 and 2 and described in more detail in Appendix A,

are initialized with the same density stratification. (a)–(c) show strongly-forced LES after just 6

hours of simulation, (d)–(f) show LES driven by medium-strength forcing after 24 hours, and (g)–(i)

show weakly forced LES after 72 hours. (a), (d), and (g) show a purely wind and wave driven case,

(b), (e), (h) are forced by a mixture of winds, waves, and cooling, and (c), (f), and (i) are “free

convection” cases forced only by cooling with no winds and waves. All simulations are rotating with

Coriolis parameter f = 10−4 s−1. The colorscale for each panel saturates at 1
2
max |w|, which for

each panel is (a) 0.26, (b) 0.29, (c) 0.086, (d) 0.20, (e) 0.23, (f) 0.070, (g) 0.056, (h) 0.14, and (i)

0.041 m s−1.

conditions, and potentially, additional auxiliary variables. For example, the parameterization260

described in the next section uses a downgradient formulation w′c′ ∼ ∂zc to predict vertical261

tracer and momentum fluxes.262

2.2 Connection to the regional and global ocean modeling context263

Our LES, and the models that predict the horizontal average of the LES, may be264

described as “single column models”. This nomenclature reflects the notion that the models265

simulate the vertical redistribution of momentum and tracers by turbulent motions in a266

single column of a three-dimensional ocean model. Indeed, we envision that the single267

column context is generalized to a large-scale ocean simulation merely by adding advection268

by motions somewhat larger than the scale of the LES domain. This approach relies on two269

–8–
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Suite Case Jb (m
2 s−3) |τx| (m2 s−2) Q

(
W
m2

)
u10

(
m
s

)
6 hour free convection +9.6× 10−7 0 +2000 0

6 hour weak wind strong cooling +8.0× 10−7 5.0× 10−4 +1666 16

6 hour mid wind mid cooling +6.4× 10−7 8.0× 10−4 +1333 20

6 hour strong wind weak cooling +4.0× 10−7 1.2× 10−3 +833 23

6 hour strong wind 0 1.4× 10−3 0 24

6 hour strong wind no rotation 0 1.1× 10−3 0 22

6 hour strong wind and sunny −6.0× 10−7 1.5× 10−3 −1250 25

72 hour free convection +8.7× 10−8 0 +181 0

72 hour weak wind strong cooling +7.5× 10−8 1.8× 10−4 +156 11

72 hour mid wind mid cooling +6.0× 10−8 2.9× 10−4 +125 13

72 hour strong wind weak cooling +3.8× 10−8 3.4× 10−4 +79 14

72 hour strong wind 0 4.1× 10−4 0 15

72 hour strong wind no rotation 0 1.1× 10−4 0 9

72 hour strong wind and sunny −5.0× 10−8 1.3× 10−4 −104 9

Table 2. Summary of surface boundary conditions for LES used to validate CATKE. See table 1

for a description and a summary of the LES used to calibrate CATKE.

key assumptions. First, the microscale turbulence must be horizontally homogeneous so as to270

ignore lateral flux divergences. Second, there must be a scale separation between microscale271

turbulence and larger-scale motions so that interactions between the two can be ignored.272

For typical oceanic situations, the first assumption is likely satisfied because vertical273

gradients are much larger than horizontal ones on the scales of a “single column model” and274

thus the vertical flux divergences dominate over the horizontal ones. In other words the ocean275

is more homogeneous in the horizontal than in the vertical on scales of O(100 m). The second276

assumption is more problematic especially near the ocean surface and bottom boundaries.277

While microscale turbulence does not significantly interact with mesoscale geostrophic eddies278

with scales of O(10–100 km), there is growing evidence of interactions between submesoscale279

frontal dynamics with scales of O(100 m – 10 km) and microscale turbulence (see the reviews280

by Thomas et al., 2008; McWilliams, 2016; J. R. Taylor & Thompson, 2023). Frontal281

instabilities are also effective at restratifying the ocean boundary layers during time of282

weak microscale turbulence (see for example Boccaletti et al., 2007). These interactions are283

presently ignored in the formulation of microscale turbulence parameterizations, but they284

are an obvious direction for future development of CATKE. Following the approach outlined285

in this paper, this will require generating a library of simulations which resolve microscale286

turbulence in the presence of ocean fronts, extending CATKE to include those physics, and287

then calibrating the extended CATKE against the library of those simulations.288

Similarly, microscale turbulent mixing in the ocean interior requires considering multi-289

scale dynamics. For example, internal waves generated by surface winds and tide-bathymetry290

interactions produce a direct cascade of internal wave energy to progressively smaller scales291

until wave breaking finally transfers energy to microscale turbulence. Incorporating the292

physics of turbulent mixing driven by internal wave breaking is another area for future293

development.294
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Figure 2. Illustration of horizontally-averaged data from the 12-hour strong wind, weak cooling

LES. Panel (a) shows the buoyancy perturbation b′. Note the colorbar is strongly saturated to

illustrate boundary layer structure; the buoyancy perturbation is particularly large at the base

of the boundary layer, where the horizontally-averaged buoyancy gradient is also strong. (b)

shows the horizontally-averaged buoyancy b, (c) shows the horizontally-averaged velocities u, v,

and (d) shows the horizontally-averaged fluctuation kinetic energy, E def
=

(
u′2 + v′2 + w′2

)
/2 and

horizontally-averaged vertical velocity variance, w′2.

3 CATKE formulation295

CATKE models the horizontally-averaged vertical fluxes w′ψ′ appearing on the right296

side of (9)–(11) with a downgradient, mixing length formulation (Prandtl et al., 1925),297

w′ψ′ ≈ − ℓψ
√
e︸ ︷︷ ︸

def
= κψ

∂zψ , (12)298

where e is the turbulent kinetic energy,
√
e is the turbulent velocity scale, and ℓψ is the299

mixing length for the horizontally-averaged variable ψ(z, t). After choosing to parameterize300

turbulent transport with eddy diffusion that depends on the turbulent velocity
√
e and301

mixing length ℓψ, the form κψ = ℓψ
√
e follows from dimensional analysis. CATKE invokes302

three mixing lengths and three eddy diffusivities for horizontal velocities (ℓu and κu), tracers303

(ℓc and κc), and turbulent kinetic energy (ℓe and κe).304

With (12), the single column equations become305

∂tu− fv = ∂z (κu∂zu) + F̄u , (13)306

∂tv + fu = ∂z (κu∂zv) + F̄v , (14)307

∂tc = ∂z (κc∂zc) + F̄c . (15)308

In this paper we use a linear equation of state that relates density to a single thermodynamic309

constituent, such that the buoyancy b is just another tracer,310

∂tb = ∂z (κc∂zb) + F̄b , (16)311

where F̄b = −∂zI corresponds to heating within the water column due to penetrating solar312

radiation, I. The buoyancy gradient N2 def
= ∂zb appears in many of the scaling arguments313

central to CATKE’s formulation, where N is often referred to as the “buoyancy frequency”.314

Note that in more realistic simulations of seawater, b and N2 are functions of geopotential315

height, mean temperature, and mean salinity through the empirically-determined seawater316

equation of state (McDougall & Barker, 2011).317
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Next we turn to the estimation of the turbulent kinetic energy e, and thus the turbulent318

velocity scale
√
e in (12). For this we first introduce the kinetic energy of the subgrid velocity319

field, E , defined in terms of the velocity fluctuations (u′, v′, w′),320

E def
= 1

2 |u′|2 = 1
2

(
u′2 + v′2 + w′2

)
. (17)321

We postulate a close relationship between e in (12) and the subgrid kinetic energy, E .322

However, this is a relationship rather than an identity, because E has contributions from323

motions that are unrelated to the eddy diffusivity in (12). For example, internal waves324

generated by convective plumes make a significant contribution to E below the base of325

boundary layer, despite that there is no mixing there. We note further that if the kinetic326

energy and mixing length are actually known, the inexact relationship between E and e327

manifests through a “correlation coefficient” (G. I. Taylor, 1922) that appears in formulations328

like (12). We therefore define e as a latent variable which is linked to the averaged velocity329

and tracer fields via (12), rather than as corresponding directly to the observable, but less330

relevant quantity (17). This interpretation has important implications for calibration: rather331

than using the discrepancy between LES-derived E and e to estimate free parameters, we332

only use the error in momentum and buoyancy profiles — which are strongly affected by e333

through (12) — to constrain the free parameters that govern the evolution of e. In other334

words, e can only be observed indirectly via the evolution of momentum and buoyancy.335

Interpreting e as a latent variable rather than as the actual subgrid kinetic energy E is also336

proposed by Kolmogorov (see Spalding, 1991) and Saffman (1970).337

Though we define e as a latent variable that is linked to u, v, c solely via (12), we338

nevertheless postulate a similarity between e and E on physical grounds — where there is339

turbulence, there will be mixing — and following a litany of prior work (Saffman, 1970;340

Gaspar et al., 1990; Spalding, 1991; Umlauf & Burchard, 2003), use the evolution equation341

for E to derive a model for the evolution of e. An equation describing the evolution of E can342

be derived from (1), including the molecular stress divergence ν∇2
(
UL −US

)
(we include343

the Stokes drift term here for completeness, though it does not contribute to the equation344

for E). The result is345

∂tE = − ∂z
(
w′E ′ + w′p′ − ν∂zE

)
︸ ︷︷ ︸

transport

− u′w′ · ∂zu︸ ︷︷ ︸
shear production

+ w′b′︸︷︷︸
buoyancy flux

− ν|∇u′|2︸ ︷︷ ︸
dissipation

, (18)346

where ν is the kinematic viscosity, p is kinematic pressure (dynamic pressure divided by a347

reference density) and E ′ = 1
2 |u

′|2 − E . Note that because u is the horizontally-averaged348

Lagrangian-mean velocity, the shear production term in (18) represents the total transfer of349

kinetic energy from the average u to the fluctuations u′ — including the so-called “Stokes350

production” term (McWilliams et al., 1997). Inspired by (18), we formulate an equation for351

e consisting of terms that mirror each term in equation (18):352

∂te = ∂z (κe∂ze)︸ ︷︷ ︸
transport

+ κu|∂zu|2︸ ︷︷ ︸
shear production

− κcN
2

︸ ︷︷ ︸
buoyancy flux

− e3/2

ℓD︸︷︷︸
dissipation

, (19)353

where |∂zu|2 = (∂zu)
2 + (∂zv)

2 is the square vertical shear of the horizontally-averaged354

velocity field u (note that w = 0 because of horizontal homogeneity), κe is the vertical355

diffusivity of e, ℓD is the “dissipation length scale”, and we have labeled the corresponding356

terms in (18) and (19). The shear production and buoyancy flux terms are formulated357

by applying the eddy diffusivity hypothesis (12) to their corresponding expressions in358

equation (18). Like in the budget for E , the shear production term in (19) represents the359

total shear production including both “Eulerian” and “Stokes” production. We assume that360

the transport of e, which helps to deepen boundary layers by modeling turbulence spreading361

away from turbulence-generating regions, can be modeled with an eddy diffusivity κe = ℓe
√
e.362

Finally, to model the dissipation of e we introduce the dissipation length scale ℓD, which363
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has a similar form to the mixing lengths ℓu, ℓc, and ℓe. The expression e3/2/ℓD follows on364

dimensional grounds.365

Equation (19) requires boundary conditions. We impose a no-flux condition on e at366

the bottom. (Extending CATKE to describe the bottom boundary layer in the future may367

require imposing a different bottom boundary condition.) At z = 0, we parameterize subgrid368

production of e by wind stress and destabilizing buoyancy fluxes across the uppermost cell369

interface with370

Je
def
= −κe∂ze

∣∣
z=0

= −Cshear
J u3⋆ − Cconv

J w3
∆ , where w3

∆
def
= ∆zmax(Jb, 0) , (20)371

and Cshear
J and Cconv

J are constant, non-dimensional free parameters, Jb is the surface372

buoyancy flux defined such that Jb > 0 removes buoyancy and thus causes convection, ∆z is373

the distance between the top of the ocean domain and the first interior cell interface, and374

w2
∆ is the convective TKE scale that follows from a balance between buoyant production375

and dissipation estimated using the grid spacing ∆z as a length scale. u⋆ in (20) is the376

ocean-side friction velocity,377

u⋆
def
=
(
τ2x + τ2y

)1/4
, (21)378

defined in terms of the zonal and meridional kinematic momentum fluxes τx and τy (wind379

stresses divided by reference water density). The boundary condition (20) differs from380

boundary conditions used in the TKE-based models described by Blanke and Delecluse381

(1993) and Madec et al. (2017), which prescribe TKE (rather than prescribing TKE flux),382

and depend only on the friction velocity u⋆.383

The surface flux formulation in (20) introduces the notation384

Clabel
component (22)385

for two free parameters Cshear
J and Cconv

J , where “label” indicates the parameter’s role and386

“component” refers to the variable or component to which the parameter associates.387

3.1 Turbulence length scale model388

We decompose the four length scales ℓψ ∈ (ℓu, ℓc, ℓe, ℓD) into a shear-dominated length389

scale ℓshearψ limited by density-stratification and boundaries, and a convection-dominated390

length scale ℓconvψ limited by the depth of the convective boundary layer. At any time and391

location, the maximum of these two length scales is chosen as the mixing length via392

ℓψ = max
(
ℓconvψ , ℓshearψ

)
, (23)393

encapsulating a sharp separation between turbulence regimes that exhibit distinct scaling394

laws. We next describe a length scale formulation that can be calibrated to predict turbulent395

fluxes associated with the kinds of flows plotted in figure 1.396

3.1.1 Shear turbulence length scale397

To represent shear dominated turbulence either in strong stratification or near the ocean398

surface, we use the length scale399

ℓshearψ = Sψ(Ri)min

(√
e

N+
,Csd

)
, where N2

+
def
= max (0, ∂zb) (24)400

with d the distance to the ocean surface, Cs a free parameter (“s” for “surface”), and Sψ401

a “stability function” defined below.
√
e/N is the vertical distance traversed by a patch of402

turbulence expending all its kinetic energy e to mix the uniform stratification N . Blanke403

and Delecluse (1993) point out that
√
e/N is a local or constant-stratification version of the404

more complete, but computationally expensive length scale proposed by Gaspar et al. (1990).405
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We use (24) for ℓshearc , ℓshearu , and ℓsheare . For the dissipation length scale ℓshearD , we use406

ℓD =
1

SD(Ri)
min

(√
e

N+
,Csd

)
, (25)407

so that the stability function for the dissipation length scale is 1/SD The alternative408

formulation in (25) yields a tight connection between SD’s free parameters and e dissipation,409

and facilitates the physical interpretation of CATKE’s parameters.410

The stability functions Sψ and 1/SD in (24)–(25) modulate each length scale with the411

stably-stratified Richardson number412

Ri
def
=

∂zb

|∂zu|2
, (26)413

which, among other meanings, indicates the role of shear production in turbulent mixing.414

The stability functions give CATKE a turbulent Prandtl number,415

Pr(Ri)
def
=

κu
κc

=
Su(Ri)
Sc(Ri)

, (27)416

that depends on Ri.417

We propose a four-part functions Sψ(Ri),418

Sψ(Ri) =


C−
ψ when Ri < 0 ,

C0
ψ when 0 ≤ Ri ≤ C0

Ri ,

C0
ψ +

(
C∞
ψ − C0

ψ

)
Ri−C0

Ri

CδRi
when C0

Ri < Ri < C0
Ri + CδRi ,

C∞
ψ when Ri ≥ C0

Ri + CδRi .

(28)419

In (28), the parameter C0
Ri is the “transition Ri”. The four regions of the stability function420

are:421

• Constant Sψ = C−
ψ for unstably-stratified shear turbulence with Ri < 0.422

• Constant Sψ = C0
ψ for near-neutral turbulence with 0 ≤ Ri ≤ C0

Ri423

• Linearly-varying from C0
ψ to C∞

ψ as Ri increases from C0
Ri to C0

Ri + CδRi.424

• Constant C∞
ψ when high Ri > C0

Ri + CδRi.425

The stability function (28) plays a similar role as the more elaborate stability functions used426

in two-equation models (Burchard & Bolding, 2001), which are derived from an second-427

moment closure. The stability functions in equation (28) are plotted in the left panel of428

figure 3 (see section 4 for how the parameters are obtained via calibration to LES).429

The four shear length scales introduce 15 free parameters: Cs, CδRi, and C0
Ri used in all430

four length scales, along with 12 additional parameters associated with the coefficients C−
ψ ,431

C0
ψ and C∞

ψ for each length scale respectively.432

3.1.2 Turbulent Prandtl and Schmidt numbers in stably stratified shear433

turbulence434

Note that CATKE’s Pr in (27) is a rational function of Ri, slightly different from the435

piecewise linear formulation proposed by Blanke and Delecluse (1993) and Madec et al.436

(2017). In particular,437

Pr =



C−
u /C−

c Ri < 0

C0
u/C0

c 0 ≤ Ri ≤ C0
Ri

C0
u+µu(Ri−C0

Ri)
C0
c+µc(Ri−C0

Ri)
C0
Ri < Ri < C0

Ri + CδRi

C∞
u /C∞

c Ri ≥ C0
Ri + CδRi

, (29)438
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Figure 3. Stability functions (left panel), and Prandtl numbers and Schmidt numbers (right

panel). The stability functions for tracers, momentum, and TKE are given by Sψ in (28). The

stability function for dissipation length scale is 1/SD. The Prandtl number is Su/Sc and the Schmidt

number for TKE is Su/Se.

where µψ
def
=
(
C∞
ψ − C0

ψ

)
/CδRi. Similarly, the Schmidt number for TKE transport in stably-439

stratified shear turbulence is Sc
def
= κu/κe. The Prandtl number and Schmidt number for440

calibrated parameters are visualized in the right panel figure 3.441

3.1.3 Neutral, self-similar, wave-modulated, non-rotating, near-surface mix-442

ing443

To interpret CATKE’s near-surface mixing length ℓψ ∼ d, we consider neutrally-stratified444

(∂zb = 0), quasi-equilibrium (∂tu ≈ ∂te ≈ 0), non-rotating (f = 0) near-surface turbulence445

driven by wind stress τ = τx x̂. We hypothesize that CATKE possesses a similarity solution446

in this scenario,447

∂zu ≈ u⋆
κ d

, (30)448

where u⋆ is the friction velocity (21) (here simply
√

|τx|), d = −z is the distance to the surface,449

and κ is a constant parameter. If the ocean surface were rigid, κ could be interpreted as the450

celebrated von Kármán constant. But because the LES we use in this paper include surface451

wave effects, κ has a slightly different interpretation — as a “wave-modified” similarity layer452

constant, perhaps, as proposed by Samelson (2022).453

To express κ in terms of CATKE’s free parameters, we begin by assuming a balance454

between shear production and dissipation and neglecting diffusive turbulent transport to455

simplify (19) to456

κu (∂zu)
2 ≈ e3/2

ℓD
. (31)457

Note that in neutral conditions,458

κu = C0
uCsd

√
e , and ℓD =

Cs

C0
D

d . (32)459

Inserting (30) and (32) into (31) and rearranging, we find an expression that relates the460

constant κ, u⋆, and e,461

u2⋆
e

≈ κ2 C0
D

C0
u (Cs)

2 . (33)462
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Notice that e is independent of d in this expression. This means that neglecting turbulent463

transport in (31) in the context of the similarity hypothesis (30) is at least self-consistent,464

though this assumption may fail when applied over significant portions of the boundary layer.465

Next, integrating the quasi-equilibrium x-momentum equation 0 ≈ ∂z (κu∂zu) from z = 0 to466

z = −d yields467

∂zu ≈ u⋆
d

u⋆
C0
uCs

√
e︸ ︷︷ ︸

=1/κ

, (34)468

where we have used the neutral momentum diffusivity in (32) and the friction velocity469

definition −κu∂zu|z=0 = u⋆. Equation 34 identifies κ by comparison to (30). We next470

use (33) to eliminate u⋆/
√
e to obtain an expression for CATKE’s wave-modified similarity471

layer constant κ,472

κ def
= Cs

[(
C0
u

)3/C0
D

]1/4
. (35)473

3.1.4 Steady-state gradient Richardson number for stably stratified shear474

turbulence475

CATKE’s dependence on the stable length scale ℓ ∼
√
e/N is associated with a steady-476

state gradient Richardson number in stably-stratified shear turbulence (Blanke & Delecluse,477

1993). To see this, we first note that in stable stratification and far from boundaries, the478

mixing and dissipation length scales become479

ℓψ = Sψ
√
e

N
for ψ ∈ (u, c, e) and ℓD =

1

SD

√
e

N
. (36)480

Inserting (36) into (19) and neglecting turbulent transport (equivalently, assuming spatially-481

uniform e) yields482

∂te = N(Sc + SD)

(
Ri†

Ri
− 1

)
︸ ︷︷ ︸

def
= r

e , (37)483

where r is a rate and Ri† is the steady-state Richardson number,484

Ri†
def
=

Su
Sc + SD

(38)485

When the Richardson number Ri = Ri† equals the steady-state value Ri†, the shear486

production of TKE is perfectly balanced by TKE destruction via buoyancy flux and dissipation.487

But if Ri < Ri†, then r > 0 — and TKE will grow. Conversely, if Ri > Ri† then r < 0488

and TKE will decay. Finally we note that the functions Sψ, defined in (28), depend on489

Ri. For example if Ri < C0
Ri, then Ri

† = C0
u/
(
C0
c + C0

D

)
. But if Ri† > C0

Ri + CδRi, then490

Ri† = C∞
u / (C∞

c + C∞
D ).491

3.1.5 Convective turbulence length scale492

To formulate a length scale for free convection, we divide the freely convecting boundary493

layer into two regions: a “convecting layer” with unstable N2 < 0, and a “penetration layer”494

with thickness δ. In the penetration layer, N2(z) > 0 but N2(z + δ) < 0, where we note495

that the vertical coordinate z increases upwards and is defined such that z < 0. (We use496

“penetration layer” rather than “entrainment layer” used by Deardorff (1970) because it is less497

likely to be confused with other types of “entrainment”.) Our formulation for the convective498

length scale models both rapid mixing in the convective layer as well as entrainment into499

the boundary layer from below by plumes plunging through the convecting layer into the500

stably-stratified penetration layer below.501

Our dynamic length scale for mixing in the convective layer is based on a dimensional502

analysis first proposed by Deardorff (1970) that links the turbulent velocity
√
e (m s−1),503
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surface buoyancy flux Jb (m
2/s3), and convective layer depth, h (m),504

√
e ∼ (hJb)

1/3
. (39)505

Recasting (39) in terms of a time-scale tmix ∼ h/
√
e for convective mixing over the depth h506

yields507

tmix ∼
(
h2

Jb

)1/3

. (40)508

But if we represent convection as a diffusive process with diffusivity κc, then we also have509

that510

tmix ∼ h2

κc
. (41)511

Equating (40) and (41) yields a scaling relation for the convective diffusivity κc.512

Now consider convection driven by constant destabilizing buoyancy fluxes Jb and513

increasing h(t): according to (40), the mixing time then evolves according to tmix ∼ h2/3. On514

the other hand, if we instead we impose a constant κc — a commonly used parameterization515

when N2 < 0 (Madec et al., 2017; Kuhlbrodt et al., 2018; Gutjahr et al., 2021; Jungclaus516

et al., 2022) — then (41) implies that, spuriously, tmix ∼ h2. Thus, constant convective517

adjustment diffusivities inaccurately exhibit tmix ∼ h2 and may produce bias when convection518

competes with other processes such as lateral restratification, or biogeochemical production519

and destruction.520

To capture tmix consistently between (40) and (41) over the convective region where521

N2 < 0, we introduce a dynamic convective mixing length scale ℓhψ that scales with h,522

ℓhψ
def
= Chψ

e3/2

J̃b + Jmin
b

∼ h , (42)523

where the regularizer Jmin
b is a minimum convective buoyancy flux parameter chosen small524

enough to have no impact on CATKE-parameterized solutions, and J̃b is an estimate of the525

slowly-evolving part of the buoyancy flux Jb averaged over time-scales t ∼ tmix. We compute526

J̃b by integrating527

∂tJ̃b =

(
Jb

ℓ2D(z = 0)

)1/3

︸ ︷︷ ︸
∼t−1

mix

(
Jb − J̃b

)
, (43)528

where ℓD is the dissipation length scale and (ℓ2D/Jb)
1/3 ∼ tmix scales with the instantaneous529

convective mixing time. Equation (43) relaxes J̃b to Jb over the time-scale tmix as defined by530

(40), and therefore effectively acts to average Jb in time. We use the dissipation length scale531

ℓD in (43) rather than the tracer mixing length ℓc because we hypothesize that convective532

turbulence evolution time-scale is most closely related to the time-scale for turbulent kinetic533

energy dissipation rather than the time-scale for tracer mixing. In quasi-equilibrium, J̃b ≈ Jb.534

Because ℓhψ ∼ h, CATKE’s convective tracer diffusivity scales with κc ∼ h
√
e.535

The second objective of our convective mixing length formulation is to correctly predict536

the evolution of h. For this we introduce a model for “penetrative mixing” below the537

convective mixed layer associated with convective plumes that plunge through the mixed538

layer and penetrate into the strongly stratified region below. The “empirical law of convection”539

(Large et al., 1994; Siebesma et al., 2007; Van Roekel et al., 2018; Souza et al., 2020, 2023) is540

the observation, robust across a wide range of convective conditions, that penetrative fluxes541

at the penetration level zp scale with542

w′b′ |z=zp ∼ −Jb such that h2 ∼ Jbt

N2
, (44)543
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for initially-constant buoyancy gradient N2 and constant buoyancy flux Jb.544

To ensure that CATKE reproduces (44), we introduce a “penetrative mixing length”,545

ℓpψ
def
= Cpc

J̃b
N2

√
e+ Jmin

b

, (45)546

which is applied at the height zp < 0 defined via547

N2(zp) > 0 and N2(zp + δ) < 0 , (46)548

where δ is the thickness of the penetration layer. At z = zp, (45) produces w′b′ = −ℓpc
√
eN2 ≈549

−CpcJb in accordance with the empirical law in (44). Our numerical implementation of the550

convective mixing length uses δ = ∆z where ∆z is the grid spacing at zp. This assumes that551

the entrainment layer is thinner than the grid spacing: when δ > ∆z, CATKE solutions may552

exhibit a “thin entrainment layer bias” even if the boundary layer deepening rate is correct.553

Finally, because e is much larger in shear turbulence than in convective turbulence with554

similar mixing rates, the scaling (42) will greatly overestimate the mixing length when e is555

produced by both convection and shear. To limit the impact of the convective mixing length556

in the presence of shear, we use an estimate of the flux Richardson number,557

R̃if
def
=

d
√
e|∂zu|2

J̃b + Jmin
b

, (47)558

where d = −z is depth, which measures the relative contribution of shear production559

(the numerator) versus buoyancy flux (the denominator) to the TKE budget in unstable560

stratification. We then use this estimate to reduce the convective mixing length by561

ϵsp
def
= max

(
0, 1− Csp R̃if

)
, (48)562

where Csp is a free parameter. The reduction factor (48) is used in lieu of more detailed563

understanding of how shear acts to limit turbulence correlation scales during convection.564

Note that the numerator in (47) estimates shear production using the mixing length d, which565

is appropriate for shear-driven turbulent mixing. This formulation means that the free566

convection length scale is more limited at depth, where convective plumes are less connected567

to destabilizing surface buoyancy fluxes.568

Putting (42), (45), and (48) together yields the piecewise parameterization569

ℓconvψ (z) = ϵsp


ℓhψ if N2 < 0 and Jb > 0 ,

ℓpψ if N2 > 0 , N2(z +∆z) < 0 , and Jb > 0 ,

0 otherwise .

(49)570

Figure 4 illustrates the behavior of the convective length scale predicted by CATKE in (49)571

for three free convection cases with surface buoyancy fluxes Jb = 9.6 × 10−7, 2.4 × 10−7,572

and 8.8 × 10−8 m2 s−3 integrated for 6, 24, and 72 hours respectively, using the initial573

buoyancy profile in equation (A1), which is also used for all our LES. Figure 4(a) shows574

CATKE-simulated buoyancy profiles after integrating for 6, 24, and 72 hours. Figure 4(b)575

shows that stronger forcing cases have greater levels of turbulent kinetic energy. Figure 4(c)576

shows the tracer mixing length, which above z = −100 meters is dominated by the convective577

mixing length. Though each case has different TKE and different surface buoyancy flux,578

they nevertheless predict similar tracer mixing lengths which are O(100) meters and thus579

similar to the boundary layer depth, corroborating the dimensional analysis in equation (39).580

Figure 4(d) shows the eddy diffusivity for the three cases — unlike a typical constant-581

diffusivity convective adjustment model, CATKE’s “convective adjustment diffusivity” varies582

depending on the strength of the surface buoyancy flux. Because the predicted mixing length583

is similar for all three cases, the tracer diffusivity varies with the surface buoyancy flux due584

to variation in the turbulent kinetic energy.585
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Figure 4. CATKE mixing length and eddy diffusivity during free convection for three cases with

boundary layer depth h ≈ 100 m. (a) CATKE-predicted buoyancy profiles for the three cases, (b)

profiles turbulent kinetic energy, e, (c) tracer mixing lengths ℓc, (d) tracer eddy diffusivities κc. The

buoyancy fluxes Jb correspond to heat fluxes Q ≈ 2000, 500, and 183 Wm−2 using Q ≈ ρocpJb/αg

and ρo = 1024 kgm−3, cp = 3991 J ◦C−1, α = 2× 10−4 ◦C−1, and g = 9.81m s−2.

4 A posteriori calibration against large eddy simulations586

We calibrate CATKE’s 23 free parameters in an a posteriori (Duraisamy, 2021; Frezat et587

al., 2022) single-column context using horizontally-averaged data from 21 LES described in588

section 2 and Appendix A. A posteriori calibration estimates free parameters by minimizing589

the error between LES data — b(z, t), u(z, t), v(z, t), and the forced passive tracer c(z, t)590

extracted from solutions of (1)–(3) — and single column simulations of b, u, v, and c in (13)–591

(15) that use CATKE as a parameterization. The minimization is computed over the whole592

time series and thus in a posteriori calibration free parameters are determined by directly593

minimizing simulation bias. In this way, a posteriori calibration incorporates numerical and594

other errors that accumulate during a simulation. Moreover, a posteriori calibration can595

leverage any observational data computable from the predicted solution, even only indirectly596

informative data. For example, in this work we calibrate elements of the TKE equation597

using only horizontally-averaged momentum and buoyancy profiles derived from LES.598

4.1 The importance of a posteriori calibration599

Explicitly minimizing simulation bias distinguishes a posteriori calibration from other600

methods that minimize other biases that are only indirectly related to simulation bias601

— for example by attempting to compute free parameters directly from data, usually by602

considering subcomponents of the parameterization in isolation (examples may be found in603

Umlauf & Burchard, 2003; Reichl & Li, 2019). These latter methods are called “a priori”604

(Duraisamy, 2021), because they hinge critically on additional and often problematically605

strong hypotheses — such as an assumption of structurally perfect, unbiased parameterization606

(permitting a direct computation of free parameters from limited data), or an assumption607

that free parameters are uncorrelated with one another (permitting free parameters to be608

determined in isolated contexts, rather than leveraging all data simultaneously).609

To illustrate the pitfalls of a priori calibration, we consider integrating a parameterized610

single column equation for buoyancy b,611

∂tb = −∂z J (b;C)︸ ︷︷ ︸
parameterization

+ ξ︸︷︷︸
noisy error

. (50)612

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

In (50), we include two terms: (i) the divergence of a parameterized flux J that depends613

on both the simulated buoyancy b (omitting here for simplicity other aspects of the state614

such as u or v) and a set of free parameters C, and (ii) an explicit “error” term ξ that615

represents spatial and temporal discretization errors. We additionally define the ideal or616

“perfect” solution as b†. When equation (50) is integrated forward to predict the evolution617

of b, fluctuations away from the perfect solution b† inevitably develop due both to structural618

errors in J and because of the discretization error ξ, leading to an error ε = b − b† that619

grows as
√
t (see, for example Gardiner, 2021).620

This error accumulation is potentially fatal for a-priori-calibrated parameterizations:621

because the parameters C are determined by evaluating J (b†) in terms of the perfect b†,622

while the predictions J (b) made in terms of the noisy b are unconstrained by the calibration623

procedure. At best, the unconstrained predictions J (b) are inaccurate. At worst, however,624

the errors J (b)− J (b†) self-amplify without bound, thwarting prediction altogether (Rasp625

et al., 2018; Brenowitz & Bretherton, 2019; Rasp, 2020).626

A posteriori calibration avoids all of these pitfalls by definition, since J (b,C⋆) computed627

in terms of the simulated b and optimal parameters C⋆ is explicitly constrained by minimizing628

the discrepancy between J (b,C) and data. Put differently: a posteriori calibration “teaches”629

J how to make accurate, stable predictions in terms of potentially noisy inputs b. We630

leverage this feature to realize a key innovation of this work: we explicitly minimize spatial631

discretization error by including single-column simulations with 2-, 4-, and 8-meter resolution632

in our loss function.633

4.2 Ensemble Kalman Inversion for a posteriori calibration634

The downside of a posteriori calibration is that nonlinear inverse problems are difficult635

to solve. In this work we use an ensemble-based, gradient-free method called Ensemble636

Kalman Inversion (EKI; Iglesias et al., 2013). A major advantage of EKI is that it does not637

require a gradient or adjoint of the CATKE-parameterized single column model. Instead,638

EKI only requires the ability to evaluate the loss functions for an ensemble of free parameters.639

The EKI algorithm can be construed either as the integration of a dynamical system or as640

an iterative scheme for repeatedly refining an initial distribution of free parameter values.641

EKI minimizes the “EKI objective function” Φ, defined as642

Φ(G,Y;C) def
=
∥∥M−1/2 [G(C)− Y]

∥∥2 , (51)643

where Y denotes observations, G(C) denotes a parameterized prediction of the observations644

made with a set of free parameters C, and M is a covariance matrix that represents the645

uncertainty of Y. Φ measures the discrepancy between G(C) and Y given uncertainty M.646

The data Y is extracted from 21 of the LES described in table 1 that have intermediate647

surface forcing, each coarse-grained three times to 2-, 4-, and 8-meter vertical resolution. G648

is constructed by assembling 21× 3 = 63 single column simulations, representing a prediction649

of each of the 21 LES cases at the three vertical resolutions.650

We note that the near-surface dynamics in the LES seems uncertain. For example, the651

LES profiles exhibit strong unstable near-surface buoyancy gradients for strongly-forced652

convective cases. Though these features are robust to changes in LES resolution (see653

Appendix A), we are unsure whether the simple implicit LES turbulence closure is missing654

crucial turbulent mixing processes important near a wavy, bubbly, broken ocean surface.655

We therefore omit the top 8 meters of the LES domain from Y to avoid overconstraining656

parameters based on the most uncertain elements of the LES data.657

EKI finds a set of optimal parameters C = C⋆ that minimize Φ(G,Y,C) in (51) by658

evolving an ensemble of parameter sets using the algorithm described in Appendix C. In659

this work we use relatively large ensembles with 1000 members. This means that every660

EKI iteration requires performing up to 21× 3× 1000 = 63, 000 single column simulations,661
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corresponding to 21 LES cases and 3 vertical resolutions for every ensemble member. To662

make the calibration as efficient as possible, we implement CATKE in Oceananigans and663

leverage a feature that permits us to integrate an ensemble of single column models in parallel664

in the configuration of a single three-dimensional simulation on a GPU. As a result, each665

EKI iteration requires evolving 9 effectively three-dimensional simulations (3 resolutions666

for each of the 12-, 24- and 48-hour suites). On an Nvidia Titan V GPU and with 1,000667

ensemble members, a single EKI iteration takes 40-50 seconds, and the entire calibration668

takes 4-6 hours. In the course of this work we have performed complete calibrations of669

CATKE’s parameters hundreds of times — to experiment with new formulations, new670

numerical schemes, and to tweak the calibration setup. This workflow represents a new671

“calibration-based” paradigm in parameterization development, where physical formulation or672

numerical implementation changes are tested against the baseline by comparing predictions673

for independently calibrated parameterizations. The 23 calibrated free parameters that674

correspond to the version of CATKE described in this paper and the previously described675

LES are listed in table 3.676

5 Validation677

We next assess CATKE’s ability to make accurate predictions in a single column context678

with the free parameters listed in table 3. First, we derive quantities with well-understood679

physical interpretations from CATKE’s free parameters, and evaluate whether their calibrated680

values are close to expected or directly measured values reported in the literature. Second,681

we compare CATKE-parameterized simulations both to the 21 constant-forcing LES used682

for calibration and to an additional 12 constant-forcing LES that are both more strongly683

and more weakly forced than the calibration LES. Third, we conduct a 34-day CATKE-684

parameterized simulation of equatorial deep-cycle turbulence using the dataset provided685

by Whitt et al. (2022), and then compare the results to the LES used therein. This third686

validation context is useful because it involves both time-dependent surface forcing, solar687

insolation, and lateral flux divergences derived from a high resolution tropical GCM. Finally,688

we evaluate CATKE’s sensitivity to vertical resolution and time-step size. These all provide689

a measure of confidence in CATKE’s ability to not only represent the LES data used for690

calibration but also to extrapolate to differently-forced conditions, time-dependent surface691

forcing, and GCM-like contexts that include lateral flux divergences from for example, the692

advection of momentum, temperature, and salinity. All of this said, we maintain a caveat693

that CATKE should still be assessed, and likely recalibrated, in a regional or global context694

that is more similar to the context in which CATKE is intended to be used.695

5.1 Derived quantities696

Table 4 shows several quantities that can be derived or computed in terms of CATKE’s697

calibrated free parameters. Note that there is unknown uncertainty in these estimates, so698

the precise values must be taken with a grain of salt. Uncertainty quantification, using the699

methodology proposed by Cleary et al. (2021) for example, is left for future work.700

5.1.1 Steady-state Richardson number701

Section 3.1.4 shows how a steady-state Ri may be derived from CATKE’s TKE equation.702

From the parameters in table 3, we find that703

Ri†
def
=

C0
u

C0
c + C0

D

≈ 0.18 , (52)704

which lies in the “near-neutral” stability function regime, since C0
Ri = 0.25 > Ri†. Ri† = 0.18705

is somewhat less than the 0.23 used by Blanke and Delecluse (1993), or the celebrated value706

Ri = 1/4 that determines the stability of a laminar stratified shear layer. In section 5.3, we707
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Symbol Description Optimal value Bounds

Cshear
J Wind stress TKE surface flux 3.18 (0, 2)

Cconv
J Convective TKE surface flux 0.38 (0, 2)

Cs Near-surface mixing scale 1.13 (0, 2)

Chc Tracer free convection scale 4.79 (0, 8)

C−
c Tracer mixing for negative Ri 0.57 (0, 2)

C0
c Tracer mixing for near-neutral Ri 0.37 (0, 2)

C∞
c Tracer mixing for high Ri 0.098 (0, 2)

Cpc Tracer free entrainment scale 0.11 (0, 2)

Chu Momentum free convection scale 3.71 (0, 8)

C−
u Velocity mixing for negative Ri 0.37 (0, 2)

C0
u Velocity mixing for near-neutral Ri 0.36 (0, 2)

C∞
u Velocity mixing for high Ri 0.24 (0, 2)

Che TKE free convection scale 3.64 (0, 8)

C−
e TKE transport for negative Ri 1.44 (0, 8)

C0
e TKE transport for near-neutral Ri 7.86 (0, 8)

C∞
e TKE transport for high Ri 0.55 (0, 8)

ChD Dissipation free convection scale 3.25 (0, 8)

C−
D Dissipation scale for negative Ri 0.92 (0, 8)

C0
D Dissipation scale for near-neutral Ri 1.60 (0, 8)

C∞
D Dissipation scale for high Ri 0.58 (0, 8)

C0
Ri Stability function transitional Ri 0.25 (0, 2)

CδRi Stability function Ri width 1.02 (0, 2)

Csp Sheared plume scale 0.50 (0, 2)

Table 3. A summary of CATKE’s free parameters. Note that “near-neutral Ri” means Ri ≤ C0
Ri,

while “high Ri” means Ri ≥ C0
Ri + CδRi. The bounds limit the values a parameter can take during

calibration, using the method described in C3. The prior distributions for each parameter span the

range between the bounds.
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find that Ri† is a crucial parameter controlling mixing in forced stably-stratified turbulence,708

and that LES tend to exhibit Ri in the range 0.2–0.23.709

5.1.2 Near-surface similarity constant710

Section 3.1.3 shows how a near-surface similarity constant — analogous to the von711

Kármán constant for turbulence near rigid non-wavy walls — may be computed from the712

near-wall and momentum stability function parameters. In terms of the parameters in table 3713

from (35) we find that714

κ = Cs
[(
C0
u

)3/C0
D

]1/4
≈ 0.47 , (53)715

which is slightly higher than the celebrated rigid-wall von Kármán constant value of 0.4. A716

slightly higher similarity constant is consistent with the notion that surface waves act to717

increase the coherence of turbulent motions, which increases mixing lengths and suppresses718

turbulent kinetic energy dissipation.719

A similar wave-induced enhancement to the similarity constant is proposed by Samelson720

(2022). However, Samelson (2022) models the enhancement as a function of wind at ten721

meters height, u10. In our case, the LES are forced with varying u10, but constant Langmuir722

number La ≈ 0.3 (see table 1 for a summary of the LES cases). Thus we must either723

hypothesize that surface waves can be modeled with a La-dependent enhancement of κ, or724

that CATKE is missing physics. Either way, we are unable to proceed further in determining725

wave-induced enhancements to κ without LES that vary both u10 and La, so we save such726

considerations for future work.727

5.1.3 The turbulent Prandtl number728

The turbulent Prandtl number is defined as729

Pr
def
=

κu
κc

, (54)730

which is derived for CATKE in section 3.1.1. For various regimes of turbulence we obtain731

• Prc ≈ 0.77 for weakly-sheared convection,732

• Pr− ≈ 0.65 for unstably-stratified shear turbulence,733

• Pr0 ≈ 0.98 for near-neutral shear turbulence,734

• Pr∞ ≈ 2.46 for strongly-stratified shear turbulence.735

A turbulent Pr that increases from less than unity to above unity as Ri crosses zero is736

consistent with laboratory and DNS studies (for example, D. Li, 2019), as well as what is737

typically used in two-equation models (for example, Burchard & Bolding, 2001). On the738

other hand, one-equation models (Blanke & Delecluse, 1993; Madec et al., 2017) typically739

prescribe Pr to a value of 10 or higher as Ri tends to infinity. It is unlikely that our boundary740

layer LES are informative for such high Ri mixing, so more LES are needed to assess and741

perhaps refine CATKE’s stability function to capture very high Ri regimes.742

5.1.4 The turbulent Schmidt number743

Calibration determines that Sc = 0.26 for unstably-stratified shear turbulence with744

Ri < 0, and then varies between 0.046 < Sc < 0.44 as Ri increases from 0 to C0
Ri+CδRi. As a745

result, TKE is transported much more rapidly than momentum or tracers in shear-dominated746

turbulence, and similarly to momentum or tracers in convective or weakly-sheared stratified747

turbulence. Rapid TKE diffusion relative to momentum or tracer diffusion introduces an748

“implicitly non-local” element to CATKE’s mixing predictions, because TKE transport can749

generate mixing in a region that is displaced from the region of TKE generation.750
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Symbol Value Description

Ri† 0.18 Steady-state gradient Richardson number

κ 0.47 Near-neutral near-surface similarity constant

Pr0 0.98 Near-neutral turbulent Prandtl number (Ri→ 0)

Pr∞ 2.46 Strongly-stratified turbulent Prandtl number (Ri→ ∞)

Pr− 0.65 Unstably-stratified shear turbulence Prandtl number (Ri < 0)

Prc 0.77 Free convection turbulent Prandtl number (Ri→ −∞)

Γ0 0.23 Near-neutral mixing coefficient (Ri→ 0)

Γ∞ 0.17 Strongly-stratified mixing coefficient (Ri→ ∞)

Sc0 0.046 Near-neutral turbulent TKE Schmidt number (Ri→ 0)

Sc∞ 0.44 Strongly-stratified turbulent TKE Schmidt number (Ri→ ∞)

Sc− 0.26 Unstably-stratified shear turbulence TKE Schmidt number (Ri < 0)

Scc 1.02 Free convection turbulent TKE Schmidt number (Ri→ −∞)

Table 4. A summary of parameters and non-dimensional numbers derived from CATKE’s cali-

brated free parameters.

5.1.5 Stratified turbulence mixing coefficient751

The “mixing coefficient” — the ratio between buoyancy flux and dissipation in stably-752

stratified turbulence (Gregg et al., 2018; Caulfield, 2020) — measures the relative TKE753

converted to potential energy in the process of mixing buoyancy vs TKE dissipation. Us-754

ing (19) and assuming stably-stratified turbulence far from boundaries such that ℓc = Sc
√
e/N ,755

ℓD =
√
e/(SDN), and κc = Sce/N , we find that756

Γ
def
= −buoyancy flux

dissipation
=

Sc
SD

. (55)757

The free parameters in table 3 imply that the mixing coefficient Γ varies between Γ0 ≈ 0.26758

for near-neutral turbulence and Γ∞ ≈ 0.17 for strongly-stratified (shear-free) turbulence.759

The latter is applicable to internal wave breaking, where an extensive literature suggests760

that Γ∞ ≈ 0.2 (Gregg et al., 2018).761

5.2 Validation against constant-forcing LES and comparison with other762

parameterizations763

In this section, we validate CATKE’s ability to make predictions both for within and764

outside the range of surface forcings used for calibration. To add context to this validation765

exercise and connect with other studies, we include a comparison with predictions from766

the K-profile parameterization (KPP; Large et al., 1994), and the “Langmuir turbulence”767

second-moment closure (SMC-LT) described by Harcourt (2015), whose results depend768

additionally on the Stokes drift profile we used for LES. All simulations, including those769

with KPP and SMC-LT, use staggered vertical grids with 128 points, in a 256-meter deep770

domain and thus with 2-meter vertical resolution. We use a 5-minute time step for CATKE,771

a 2-minute time step for KPP, and a 1-second time-step for SMC-LT. Such a short time-step772

was used for SMC-LT because we observed that the results were sensitive to time steps 20773

seconds and longer for the strong forcing cases.774

We should treat these comparisons with some caution, because KPP or SMC-LT were775

calibrated to somewhat different datasets than what we use for CATKE. That said, we find776
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that for every constant-forcing case, CATKE predicts the boundary layer depth simulated by777

LES — both inside and outside the training dataset — more accurately than either KPP or778

SMC-LT. This is an important result because boundary layer is a key metric determining the779

short-term sensitivity of climate predictions (Gregory, 2000; Held et al., 2010). Moreover and780

by design of the calibration problem (because we omit the upper 4 meters of the LES profiles781

from the error estimate), CATKE predicts more well-mixed near-surface profiles during782

convection, and thus warmer sea surface temperatures, than either KPP or SMC-LT. With783

this broad summary of CATKE’s main successes stated, we focus the subsequent discussion784

for each case on CATKE’s biases and areas to focus on for future improvements.785

5.2.1 Constant forcing validation: free convection786

We begin with the free convection cases plotted in figure 5. The free convection cases787

represent some of the best predictions of KPP and SMC-LT. Boundary layer depth is well-788

predicted by all parameterizations to within 10 meters, with perhaps the greatest bias coming789

from SMC-LT in the weakly-forced 72-hour case — despite that KPP has known structural790

biases for representing free convection (Souza et al., 2020). Oddly, for the more strongly791

forced cases, a large portion of the KPP profiles are stably stratified within the boundary792

layer, and capped by a very strong unstable stratification near the surface. Of the three,793

CATKE’s convective mixing length most capably keeps the boundary layer nearly-neutrally794

stratified during strong free convection.795

For near-surface buoyancy (and equivalently sea surface temperature, or SST) the three796

parameterizations make somewhat different predictions. For example, CATKE predicts797

a nearly-mixed boundary layer due to its convective mixing length, which means that it798

predicts a warmer SST. On the other hand KPP, SMC-LT, and the LES all predict layers799

(of varying thickness) of unstable stratification next to the surface, and thereby also predict800

substantially colder SST than CATKE. Caution is probably warranted when interpreting801

the LES results, however: our LES may exhibit spuriously reduced mixing near the upper802

boundary where the simulated scale of turbulent eddies shrinks significantly below the grid803

scale. Addressing this uncertainty in the LES data requires the use of observations of the804

near-surface temperature profiles to inform modifications to the LES, which is left for future805

work.806

The buoyancy profiles in figure 5 reveal bias in CATKE’s predictions of the detailed807

structure of the lower half of the convecting boundary layer. One contribution to this bias808

is well-known: in free convection, buoyancy fluxes in the lower half of the boundary layer809

are upgradient. In order to accurately capture the boundary layer depth, CATKE must810

accurately predict the buoyancy flux — and therefore cannot avoid erroneously predicting811

a slightly unstably stratified buoyancy profile where in the LES the profile is either nearly812

mixed or actually slightly stably stratified. No amount of calibration or additional free813

parameters can fix this bias given CATKE’s downgradient formulation — the only recourse814

is to introduce a non-downgradient, and therefore non-local, contribution to CATKE’s815

fluxes. For example, CATKE could be augmented with a mass flux scheme in the manner of816

Siebesma et al. (2007); Giordani et al. (2020). Other alternatives include evolving fluxes817

directly as in Garanaik et al. (2024), or adding additional tracer variance equations and818

computing non-gradient fluxes in terms of those (Legay et al., 2024). But even this may not819

be sufficient — for example, even though KPP has a non-local model for fluxes, it still has820

significant biases in convective boundary layer buoyancy structure.821

To investigate CATKE’s free convection bias further, figure 6 compares CATKE’s822

predictions of the forced passive tracer profile with LES. This comparison reveals that while823

CATKE generally models the tracer profile well (except for the extreme, extrapolating, 6-hour824

case in panel a), CATKE tends to overmix especially in the lower part of the boundary825

layer, where the LES profiles exhibit a slight peak and a bit more shape. Thus in addition826

to lacking a non-local contribution to fluxes, CATKE also overpredicts mixing to some827
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Figure 5. A four-way comparison for the “free convection” constant forcing cases described in 1

and Appendix A between LES, CATKE, the K-profile parameterization (KPP Large et al., 1994),

and the Langmuir turbulence second moment closure described by Harcourt (2015) (SMC-LT). KPP

and SMC-LT are implemented in the General Ocean Turbulence Model (GOTM, Umlauf & Burchard,

2005). Panels (a)–(e) show free convection for forcing of decreasing strength, corresponding to the

6-, 12-, 24-, 48-, and 72-hour suites, respectively. The free convection cases have no wind forcing and

destabilizing buoyancy fluxes that correspond, roughly, to heat fluxes between 181 and 2000Wm−2.

The initial condition is density stratified with a depth-varying buoyancy gradient that varies between

10−6 s−2 and 2× 10−5 s−2.
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Figure 6. Comparison between the forced passive tracer profile simulated by LES and CATKE

for free convection. The passive tracer forcing, which is described in appendix A2, is a Gaussian

centered on z = −96 m and 8 m wide. The strength of the forcing depends on the suite: the 6-,

12-, 24-, 48-, and 72-hour suites use 15 minute, 30 minute, 1 hour, 2 hour, and 4 hour forcing time

scales, respectively.
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Figure 7. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “strong wind, no rotation” constant forcing cases described in table 1 and

Appendix A. The strong wind, no rotation cases are forced by surface stresses that correspond

roughly to 9–22 m s−1 atmospheric wind at a height of 10 m. See figure 5.
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Figure 8. Comparison between the forced passive tracer profile simulated by LES and CATKE

for strong wind, no rotation. See figure 6.

degree, especially near the base of the boundary layer. Solving this bias could simultaneously828

motivate adding non-local contributions to convective fluxes as well as modifying the depth829

structure of the convective mixing length.830

5.2.2 Constant forcing validation: shear-driven turbulence831

We next turn to pure shear- or wind-driven turbulence. We have two such cases, one832

without rotation and thus representing near-equatorial mixing, and a second with a Coriolis833

parameter of f = 10−4 s−1 corresponding to a latitude of about 43◦. The wind forcing that834

would produce the momentum flux applied to the strong wind, no rotation cases spans from835

9–22 m s−1. The wind forcing in the strong wind (and rotating) cases spans 15–24 m s−1.836

A comparison between LES, SMC-LT, KPP, and CATKE for the strong wind, no837

rotation case is shown in figure 7. All parameterizations make similar and good predictions838

for boundary layer depth and surface temperature, except for SMC-LT in the 6-hour case,839

where it overmixes slightly. A comparison between CATKE and LES simulations of the840
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Figure 9. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the strong wind constant forcing cases described in table 1 and Appendix A. The

strong wind cases are rotating with Coriolis parameter f = 10−4 s−1 and forced by surface stresses

that correspond roughly to 15–24 m s−1 atmospheric wind at 10 meters height. See figure 5.
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Figure 10. Comparison between the forced passive tracer profile simulated by LES and CATKE

for strong wind. See figure 6

forced passive tracer for the strong wind, no rotation case is shown in figure 8, revealing that841

CATKE fares far better for this case than for free convection, and more specifically exhibits842

a slight tendency to overmix near the base of the boundary layer and to undermix near the843

surface.844

The strong wind case with rotation plotted in figure 9 proves more challenging for845

CATKE and extremely challenging for SMC-LT and KPP. For all forcing strength, SMC-LT846

and KPP exhibit serious shallow bias and warm SST bias. CATKE simulations, on the other847

hand, are good but exhibit a tendency to overmix slightly, resulting in boundary layers that848

are approximately 5% too deep. Figure 10 compares CATKE and LES predictions of the849

forced passive tracer for the strong wind case, corroborating the “overmixing bias” especially850

for the 6- and 48-hour suites, while additionally revealing undermixing near the surface.851
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Figure 11. A four-way comparison between LES and three turbulence closures (CATKE,

KPP, and SMC-LT) for the “strong wind, weak cooling” constant forcing cases described in

table 1 and Appendix A. The strong wind weak cooling cases are rotating with Coriolis parameter

f = 10−4 s−1, forced by surface stresses that correspond roughly to 14–23 m s−1 atmospheric wind at

10 meters height, and destabilizing buoyancy fluxes that correspond roughly to heat fluxes between

79–833 Wm−2. See figure 5.
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Figure 12. Comparison between the forced passive tracer profile simulated by LES and CATKE

for strong wind, weak cooling. See figure 6.

5.2.3 Constant forcing validation: mixed shear and convective turbulence852

CATKE simulations are also accurate for cases involving both wind and destabilizing853

buoyancy forcing, which produces a mixed regime of turbulence with both shear and buoyant854

production of TKE. We have three mixed cases comprising a total of 15 LES with both wind855

and buoyancy forcing: strong wind, weak cooling, medium wind, weak cooling, and weak856

wind, strong cooling. Results for these 15 cases are shown in figures 11, 13, and 15. KPP857

exhibits significant shallow bias for all cases. SMC-LT exhibits less shallow bias than KPP,858

but still more than CATKE. Because KPP and SMC-LT also predict a spuriously strong859

unstable buoyancy gradient near the surface (compared to the present LES), the SST biases860

are more variable. CATKE, on the other hand, makes good predictions for all cases except861

in the weak wind, strong cooling cases where it overmixes.862
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Figure 13. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “mid wind, mid cooling” constant forcing cases described in table 1 and

Appendix A. The mid wind mid cooling cases are rotating with Coriolis parameter f = 10−4 s−1,

forced by surface stresses that correspond roughly to 13–20 m s−1 atmospheric wind at 10 meters

height, and destabilizing buoyancy fluxes that correspond roughly to heat fluxes between 125–1333

Wm−2. See figure 5.
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Figure 14. Comparison between the forced passive tracer profile simulated by LES and CATKE

for mid wind, mid cooling. See figure 6.

Figures 12, 14, and 16 compare CATKE and LES predictions of the forced passive tracer863

for strong wind, weak cooling, mid wind mid cooling, and weak wind weak cooling cases.864

The most bias is exhibited in the weak wind strong cooling case, where it tends to overmix865

as exhibits in both the boundary layer depth in figure 11 and the tracer profiles in figure 12.866

This shows that the most difficult cases are free convection and “weak wind, strong cooling”867

— the cases where convective dynamics dominate.868

The “weak winds, strong cooling” case is the most challenging for CATKE. For this869

case, the 72-hour LES is forced by 156 Wm−2 equivalent heat flux and 11 m s−1 10-meter870

atmospheric winds, while the 6-hour LES is forced by 1666 Wm−s and 16 m s−1 10-meter871

winds. In the 6- and 12-hour cases, KPP exhibits a similar “stable stratification bias” as872

seen in free convection in figure 5. SMC-LT exhibits a shallow bias for the strongly forced873

cases and a deep biased for the weakly forced cases (and quite accurate predictions for the874

24-hour case). CATKE also predicts a too-sharp entrainment layer that is much thinner875
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Figure 15. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “weak wind, strong cooling” constant forcing cases described in table 1 and

Appendix A. The weak wind strong cooling cases are rotating with Coriolis parameter f = 10−4 s−1,

forced by surface stresses that correspond roughly to 11–16 m s−1 atmospheric wind at 10 meters

height, and destabilizing buoyancy fluxes that correspond roughly to heat fluxes between 156–1666

Wm−2. See figure 5.
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Figure 16. Comparison between the forced passive tracer profile simulated by LES and CATKE

for weak wind, strong cooling. See figure 6. See figure 6.
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than the broad entrainment layer observed in the LES in the 6- and 12-hour weak winds,876

strong cooling cases. These simulations are farthest from quasi-equilibrium in time and may877

exhibit strong non-locality. Despite CATKE’s errors for the 6-hour case, however, CATKE’s878

boundary layer depth predictions for the 24-, 48-, and 72-hour case are accurate.879

5.2.4 Constant forcing validation: summary880

CATKE exhibits less bias than either KPP or SMC-LT across all cases, even when881

making predictions “outside” its training dataset. In particular, CATKE generates good882

predictions of boundary layer depth, even in convective dominated cases where an analysis883

of tracer profiles suggests that CATKE tends to overmix. Fixing CATKE’s convecitve biases884

will likely require additional work with both the convective mixing length, and CATKE’s885

stability function formulation for Ri < 0.886

CATKE makes good predictions relative to KPP or SMC-LT in part because its887

formulation expresses reasonable physical hypotheses, but also because its parameters have888

been calibrated comprehensively to minimize bias across a wide range of physical scenarios889

and vertical resolutions. In particular, the simulations that CATKE has been trained on are890

more similar to the extrapolation test cases (the 6- and 72-hour cases) than the datasets that891

either KPP or SMC-LT have been trained on. This generates an ambiguity in comparing892

the three: do KPP and SMC-LT exhibit greater bias because of structural issues with their893

formulation, or do they need to be recalibrated in a similar manner as CATKE? We cannot894

answer this question conclusively. While KPP has known structural biases (see, for example,895

Souza et al., 2020), the formulation of SMC-LT is seemingly more general than CATKE. We896

therefore suspect that a posteriori calibration of SMC-LT will allow it to make predictions897

that are as or more accurate than CATKE. And until this calibration is performed, any898

judgments about the biases of SMC-LT must be taken with a grain of salt.899

5.3 Deep cycle turbulence in the tropics900

We next turn to a validation case that requires significant extrapolation outside of901

the constant-forcing dataset: 34 days of deep cycle turbulence in the tropics forced by902

time-varying winds, surface heat fluxes, and surface freshwater fluxes, as well as lateral flux903

divergences derived from a regional ocean model. The scenario and LES that we use to904

validate the single column model simulations are described by Whitt et al. (2022).905

Figure 17 illustrates the complex dynamics of this situation by showing vertical kinetic906

energy from the LES, TKE from CATKE, and Ri from days 8 to 13 of the time-series. In907

this topical turbulence scenario, a combination of wind stress and stabilizing solar insolation908

in daytime produces a shallow, stably-stratified jet in the upper ∼10 meters of the water909

column. As day turns to night, outgoing radiation starts to dominate the incoming solar910

insolation to reduce and eventually destabilize the upper part of the water column, producing911

turbulent mixing driven by a combination of convective buoyancy flux and shear. Momentum912

is thereby mixed downwards and injected into the stably stratified region below the base of913

the boundary layer. Remarkably, because the region below the boundary layer is close to914

marginally stable (Smyth & Moum, 2013), this nocturnal injection of momentum from the915

boundary layer eventually leads to shear instability which spans the entire, roughly 100 m916

depth of the region below the mixed layer. More often then not, the turbulence “pulsates” —917

initial bursts of turbulence mix momentum and buoyancy and thus decay rather quickly, only918

to precipitate a second, and even a third burst of turbulence later on the evening (Smyth et919

al., 2017). The process, which is called “deep cycle turbulence”, repeats itself the next day.920

The slow growth and intermittent bursting of turbulence at night is prominent in921

LES vertical kinetic energy shown in figure 17a. Figure 17b shows that CATKE exhibits922

a qualitatively similar bursting behavior, though the timing of the bursts are sometimes923

misrepresented. Moreover, inspection of the Richardson number plotted in figures 17c and d924
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Figure 17. Overview of the tropical turbulence validation case. Panels show: (a) the forcing

and heat fluxes, (b) vertical kinetic energy w′2 from the LES described by Whitt et al. (2022),

(c) CATKE’s TKE variable, (d) the Richardson number computed from the horizontally-averaged

LES momentum and buoyancy profiles, and (e) the Richardson number predicted by CATKE. The

shaded red areas in panels (d) and (e) indicate a negative Richardson number. Shown here are

days 8–13 out of the entire 34-day time-series. The heat fluxes are negative during the day (heat

going downwards, into the ocean) and positive at night (heat going up, out of the ocean). The LES

vertical kinetic energy and CATKE turbulent kinetic energy exhibit intermittent bursting. In the

deep region below the boundary layer where turbulent bursting occurs, LES-derived Richardson

numbers get as low as 0.15. In the CATKE solution and in the same region, the Richardson number

reaches a minimum of about 0.18.
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Figure 18. Median Ri, shear (S2), and buoyancy frequency N2 at each depth computed from 34

days of realistic equatorial turbulence simulated by LES and CATKE. The LES Ri is computed

in terms of the horizontally-averaged shear and buoyancy. Shading shows the range between the

25% and 75% quantiles. CATKE’s prediction of Ri is narrowly peaked around its steady-state

Richardson number, Ri† = 0.18. This reveals a bias in CATKE: the median Ri in the LES is more

variable and in particular, does not reach values as low as 0.18. Turning to the buoyancy gradient

and shear, it seems that CATKE overpredicts both. This reflects complexity: apparently CATKE

undermixes both momentum and buoyancy, but exhibits more bias for momentum mixing, which

permits the development of lower Ri than observed in the LES. Given that CATKE has already

been calibrated to cases that presumably exhibit similar stratified shear mixing physics as this

tropical turbulence case, fixing the Ri, N2, and S2 biases may require changing the formulation of

CATKE’s stability functions.
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Figure 19. A comparison of the vertical temperature flux and vertical temperature flux divergence

in tropical turbulence between LES (Whitt et al., 2022), CATKE, and the Generic Length Scale

(GLS) turbulence closure as reported by Reichl et al. (2024).

reveals that CATKE sometimes underpredicts, and sometimes overpredicts the Richardson925

number. Figure 18 investigates this further by plotting the median Ri, N2, and S2 and926

shading the range of values between the 25% and 75% quantiles. The Ri statistics in the927

left panel are striking: while the Ri in the LES is relatively variable with a broad peak928

around Ri ≈ 0.21, CATKE’s Ri are narrowly concentrated around its steady state value929

0.18. Turning to N2 (middle panel) and S2 (right panel), we see that the Ri bias is not930

straightforwardly associated with a bias in either N2 or S2 — both are slightly overpredicted931

(indicating undermixing), but nevertheless exhibit similar medians and ranges compared to932

the LES.933

Despite the errors in burst timing and Richardson number, we argue that CATKE’s934

predictions should be interpreted as relatively accurate. To make this point, figure 19935

compares the vertical temperature flux and flux divergence between the LES, CATKE, and a936

third single column GOTM run that uses the “Generic Length Scale” (GLS) closure reported937

by Reichl et al. (2024). GLS is a second-moment closure similar to SMC-LT (Umlauf &938
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Figure 20. Illustration of sensitivity of CATKE predictions to vertical resolution for the weak

wind, strong cooling case. Four vertical resolutions are shown: 1, 4, 8, and 16 meters. CATKE’s

calibration explicitly minimized errors between LES and CATKE simulations at 2, 4, and 8 meter

resolution, such that the 1 and 16 meter cases represent “extrapolation in resolution.” The predictions

are converged for resolutions 8 meters and finer, but the 16 meter resolution results exhibit small

discrepancies from the converged solutions.

Burchard, 2003), which is used to facilitate a comparison with Reichl et al. (2024). For some939

reason, the bursting behavior observed in both the LES and CATKE solutions is absent from940

GLS — suggesting that CATKE may hold an edge over GLS (at least, the GLS implemented941

in GOTM with default free parameter choices) in modeling intermittent forced stratified942

shear turbulence. The vertical structure of the flux divergences in CATKE are also more943

similar to the LES than the GLS solution.944

5.4 Sensitivity to vertical resolution and time-step945

Next we investigate the sensitivity of CATKE’s predictions to numerical parameters like946

vertical resolution and time-step size — a well-appreciated concern with ocean microscale947

parameterizations (Reffray et al., 2015; Van Roekel et al., 2018). The sensitivity of CATKE’s948

predictions to vertical resolutions ranging from 1 to 16 meters is shown in figure 20 for the949

weak wind, strong cooling case (the case for which CATKE exhibits the most bias). Recall950

that CATKE was calibrated using simulations with 2-, 4-, and 8-meter vertical resolution,951

such that 1 and 16 meters represent “extrapolation”. Based off the results in figure 20, we952

preliminarily conclude that CATKE is insensitive to vertical resolutions 8 meters and finer.953

At 16 meter resolution, CATKE’s predictions are still good compared to the biases observed954

for KPP and SMC-LT, but nevertheless start to deviate from the higher-resolution solutions955

and, in particular, tend to overmix. It may be that with such a coarse resolution, it simply956

is not possible to resolve the structure of strongly-stratified entrainment layers at the base of957

the boundary layer.958

The sensitivity of CATKE’s predictions to time-step size — at a vertical resolution of 1959

meter — are shown in figure 20. Note that CATKE requires a smaller time step for finer960

vertical resolution. Put differently, smaller time-steps are required to resolve the evolution of961

TKE, momentum, and tracers, and associated vertical transmission of information, on finer962

grids. More strongly forced cases also require smaller time steps. Figure 21, and additional963

tests, show that with 1 meter vertical resolution, CATKE requires time-steps 2 minutes or964

shorter to resolve the dynamics associated with surface forcing as strong as that encountered965
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Figure 21. Sensitivity of CATKE predictions to time step for 1 meter vertical resolution for the

weak wind, strong cooling case. At 1 meter resolution and in the strong forcing conditions of the

12- and 6-hour suites, CATKE solutions show time-step dependence for time steps longer than 1

minute. To enable longer time steps for high vertical resolutions in the presence of strong forcing,

the substepping scheme described in Appendix B is used and demonstrated in figure 22.

in the 6-hour-suite. (A 5-minute time step is adequately converged for the 12-, 24-, 48-, and966

72-hour suite, however.)967

We address this sensitivity of CATKE’s predictions to time-step by implementing a968

novel split-explicit scheme that substeps the TKE using a short time-steps, while evolving969

momentum and tracers with a longer time-step. The details are given in Appendix B. The970

results are shown in figure 22, showing that CATKE generates converged predictions for971

momentum and tracer time-steps between 1 and 20 minutes when the TKE is substepped972

with a short 30 second time step.973

6 Discussion974

This paper describes a novel one-equation parameterization for vertical fluxes by ocean975

microscale turbulence called “CATKE”. CATKE extends existing one-equation parameteri-976

zations (Blanke & Delecluse, 1993; Madec et al., 2017) with a dynamic model for convective977

adjustment capable of describing the wide range of convective mixing rates observed in the978

ocean surface boundary layer. CATKE’s 23 free parameters are calibrated against large eddy979

simulations accounting for discretization errors. We use a posteriori calibration, meaning980

that the CATKE parameters are calibrated to capture the full temporal evolution of the981

coarse-grained variables rather than, for example, matching the unresolved eddy fluxes. This982

approach improves both the accuracy and the stability of the calibrated parameterization.983

Our decision to develop a one-equation TKE-based parameterization rather than a984

K-profile parameterization (KPP, see Large et al., 1994; McWilliams et al., 2009; Van Roekel985

et al., 2018; Reichl & Hallberg, 2018; Reichl & Li, 2019) merits some discussion. KPPs have986

a major advantage over TKE-based parameterizations in coarse resolution ocean models987

(especially with different time-steps for momentum and tracer variables) because they admit988

time-steps as long as 2 hours (Reichl & Hallberg, 2018). In part, we are interested in989

one-equation parameterization because our focus is higher resolution, mesoscale-permitting990

and mesoscale-resolving simulations that require 1–10 minute time-steps to satisfy the991

advective numerical stability constraints of energetic solutions on relatively high-resolution992

grids. CATKE adds no additional time step constraints to such simulations, while offering993
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Figure 22. A comparison between LES and CATKE-parameterized single column simulations at

1 meter vertical resolution and three different momentum and tracer time-steps, when turbulent

kinetic energy is substepped with a 30 second time step using the scheme described in Appendix B.

For the 6-hour suite, the time-step dependence is greatly reduced compared to the non-substepped

case shown in figure 21, but is not entirely converged. We suspect this is because even momentum

and tracers require a time step shorter than 20 minutes for such strong forcing at high vertical

resolution.

some significant benefits: (i) dynamic prediction of diffusivity vertical structure versus994

prescription via “shape functions”; (ii) turbulent intensity growth and relaxation time scales995

or “memory”, and (iii) better computational performance on hardware with fine-grained996

parallelism such as Graphics Processing Units (GPUs) used for example by Oceananigans997

(Ramadhan et al., 2020; Silvestri et al., 2024) and Veros (Häfner et al., 2021), which are998

ill-suited for the nonlinear solvers for boundary layer depth common to KPP-type models999

(Zhang et al., 2020).1000

Our calibration to a relatively limited range of LES cases reported in this paper is1001

just the first step towards using CATKE for global ocean modeling and climate projection.1002

In particular, our ultimate objective is more accurate climate predictions with quantified1003

uncertainties. Addressing this ultimate goal requires first quantifying the uncertainty of1004

CATKE’s free parameters relative to high-resolution data, using the calibration context1005

presented in this work. Next, with prior parameter distributions in hand, CATKE’s free1006

parameters must then be recalibrated concomitant with other climate model free parameters1007

against global climate observations to account for physics missing from the limited LES1008

context used in this work, and to account for interactions between CATKE and other1009

components of the climate model.1010

A second future step is to further calibrate CATKE to a more comprehensive suite of1011

LES forced with temporally-varying surface fluxes, surface wave fields with La ̸= 0.3, and1012

horizontal flux divergences (for example following Whitt et al., 2022). These calibrations1013

against more comprehensive LES will provide robust prior estimates of CATKE’s parameters1014

in preparation of the final goal of calibrating CATKE in a global context, by minimizing1015

the mismatch between predictions of the ocean climate state and relevant observations1016

with global or near-global coverage. More comprehensive calibration to more LES and to1017

observations in a global context will likely reveal deficiencies to be addressed by further1018

development of CATKE’s formulation, such as accounting for the effect of surface waves on1019

CATKE’s mixing and dissipation length scales.1020
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Appendix A A synthetic dataset generated by large eddy simulations1021

We use a synthetic dataset to calibrate and assess CATKE consisting of 35 idealized1022

large eddy simulations (LES) of the ocean surface boundary layer with imposed constant1023

surface fluxes of temperature and momentum and a simple surface wave field.1024

A1 Initial conditions1025

The LES are initialized from rest with zero velocity and the piecewise-linear buoyancy1026

stratification1027

b(z, t = 0) =


N2

1 z for z > −h1 ,
N2

2 z +
(
N2

2 −N2
1

)
h1 for − h2 > z > −h1 ,

N2
3 z +

(
N2

3 −N2
2

)
h2 +

(
N2

2 −N2
1

)
h1 for z < −h2 ,

(A1)1028

with N2
1 = N2

3 = 2× 10−6 s−2, N2
2 = 10−5 s−2, h1 = 48m, and h2 = 72m.1029

A2 Passive tracer forcing1030

We additionally simulate the evolution of a passive tracer c which is forced by1031

Fc(z) = ω+e
−(z−zc)2/2λ2

c − ω− , (A2)1032

where zc is the depth of the forcing, λc is the width of the forcing, ω+ is an inverse forcing1033

time-scale that varies between each suite, and ω− is chosen so that Fc has zero mean, that is1034

ω−
def
=

ω+

Lz

∫ 0

−Lz
e−(z−zc)2/2λ2

c dz1035

≈ ω+
λc
√
2π

Lz
, (A3)1036

where Lz is the depth of the domain. The approximation of the integral holds when the1037

forcing is far from boundaries, or when −Lz ≪ zc−λc and 0 ≫ zc+λc. We use zc = −96 m1038

and λc = 8 m for all cases. For the forcing time scale ω−1
+ , we use 15 minutes, 30 minutes,1039

1 hour, 2 hours, and 4 hours for the 6, 12, 24, 48, and 72 hour suites, respectively.1040

A3 Constant-flux boundary conditions1041

The 35 simulations differ in their boundary conditions and Stokes drift. The 351042

simulations, which have different boundary conditions and S are organized into 5 “suites”,1043

each of which has 7 cases: free convection, weak wind strong cooling, medium wind medium1044

cooling, strong wind weak cooling, strong wind, strong wind no rotation, and strong wind1045

and sunny. The suites differ by both forcing strength and duration, simulating 6, 12, 24,1046

48, and 72 hours of boundary layer turbulence respectively. The forcing strength is chosen1047

for each suite and case so that the boundary layer deepens to roughly half the depth of the1048

domain; for example, the “6-hour suite” has the strongest forcing, and the “72-hour suite”1049

has the weakest forcing. “Strong wind no rotation” and “strong wind and sunny” use f = 0,1050

while the rest use the Coriolis parameter f = 10−4 s−1. The surface fluxes for the 35 LES1051

are summarized in tables 1 and 2. To draw a connection between the LES suites and real1052

air-sea flux conditions, tables 1 and 2 provide an estimate of heat fluxes Q for each case,1053

as well as an estimate of the atmospheric wind at 10 meters height using similarity theory1054

(reduced to the case of neutral buoyancy fluxes for simplicity, see Large and Yeager (2009)),1055

u10 =

√
|τa|
c10

, where c10 =

(
κ

log (10/ℓr)

)2

, and ℓr = 0.011
|τa|
g
, (A4)1056

where ℓr is the Charnock roughness length given gravitational acceleration g = 9.81m s−2,1057

κ = 0.4 is the von Kármán constant, and τa = ρoτx/ρa is the atmospheric kinematic1058
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momentum flux given ocean reference density ρo = 1024 kgm−3 and atmosphere density1059

ρa = 1.2 kgm−3.1060

A4 Stokes drift model1061

For all wind-forced cases, we additionally impose a surface wave field with a surface1062

Stokes drift amounting to a constant “Langmuir number” La =
√
u⋆/US(z = 0) ≈ 0.3. Our1063

Stokes drift prescription models a surface wave field with the friction-number-dependent1064

peak wavenumber1065

kp = Ck
g

u2⋆
, (A5)1066

where u⋆ =
√
|τx| is the water-side friction velocity, g is gravitational acceleration, and we1067

use Ck = 10−6.1068

We follow Lenain and Pizzo (2020) to estimate the depth-profiles of Stokes drift and1069

Stokes drift shear. The Stokes drift beneath a spectrum of deep-water waves is1070

US(z) = 2

∫ ki

kp

e2kzk
√
gk χ(k) dk , (A6)1071

where χ(k) is a one-dimensional wave spectrum that neglects “directional spreading”. The1072

spectrum χ(k) is divided into an “equilibrium range” just above the spectral peak kp, and a1073

“saturation range” at even higher wavenumbers:1074

χ(k) =

{
Cβ
2
√
ga⋆k

−5/2 for kp < k < kn (equilibrium) ,

CBk
−3 for kn < k < ki (saturation) ,

(A7)1075

where kn is a transition wavenumber between equilibrium and saturation ranges, ki is an1076

upper wavenumber cutoff above which waves are assumed to be isotropic and there do not1077

contribute to Stokes drift. a⋆ = u⋆
√
ρo/ρa is the air-side friction velocity defined in terms1078

of the water-side friction velocity u⋆, a reference air density ρa = 1.2 kgm−3 and ocean1079

density ρo = 1024 kgm−3. Wavenumbers below the spectral peak kp are assumed too weak1080

to contribute appreciably to Stokes drift.1081

Both the transition wavenumber kn and the isotropic wavenumber ki decrease with1082

increasing u⋆:1083

kn
def
= Crga

−2
⋆ , (A8)

ki
def
= Ciga

−2
⋆ , (A9)

where Cr = 9.7× 10−3 and Ci = 0.072.1084

The Stokes drift is1085

US(z) = Cβa⋆

∫ kn

kp

e2kz

k
dk + 2CB

√
g

∫ ki

kn

k−3/2e2kz dk . (A10)1086

Noting that
∫ kn
kp

k−1e2kz dk = Ei(2knz) − Ei(2kpz), where Ei is the exponential integral1087

function, we find1088

US(z) = Cβa⋆ [Ei(2knz)− Ei(2kpz)] + 2CB
√
g [υ(kn)− υ(ki)] , (A11)1089

and1090

∂zU
S = 2Cβa⋆

∫ kn

kp

e2kz dk + 4CB
√
g

∫ I

n

e2kz√
k

dk , (A12)1091

= Cβa⋆
e2kpz − e2knz

|z|
+ 2CB

√
2πg

|z|

[
erf
(√

2kn|z|
)
− erf

(√
2ki|z|

)]
, (A13)1092

for the Stokes shear.1093
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A5 LES uncertainty: effects of resolution and Stokes drift1094

All LES use 2 meter horizontal resolution and a stretched vertical resolution that varies1095

from 0.8 meters in the upper half of domain to 2.3 meters at the bottom. We refer to this1096

as “1 meter” vertical resolution. To account for the effects of resolution on the 35 LES used1097

as synthetic observations in this paper, we run 70 additional LES on coarser grids with1098

double (“2 meter”) and quadruple (“4 meter”) resolution, and use these to estimate the1099

observational uncertainty used in calibration (see 4 for more details). The effect of resolution1100

depends on forcing strength: for the 6 and 12 hour suite, the results are nearly identical for 1-1101

and 2-meter vertical resolution. Figure A5 shows the results for 4 cases in the 12 hour suite.1102

Note that in the free convection case, the first two grid points exhibit a strong unstable1103

stratification in the 12 hour suite. We attribute this to an artificial reduction of mixing near1104

the top boundary of the LES. It might be possible to address this artificially-strong unstable1105

mean stratification by introducing, for example, a surface-concentrated eddy diffusivity.1106

However, because the LES are used only for training CATKE and thus matter mostly in their1107

predicted boundary layer depth, we choose instead to ignore the top 4 m when computing1108

the LES–CATKE discrepancy during calibration.1109
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Figure A1. Resolution dependence of 12-hour LES.

Figure A5 shows the resolution dependence of the 24-hour suite. These LES show1110

slightly more resolution dependence than the 12-hour suite, especially for cases forced by a1111

combination of wind and cooling. This indicates that our LES data for more weakly forced1112

cases are less certain than the strongly forced cases. Interestingly, we find that CATKE1113

exhibits the least bias for the weakly forced cases than for the strongly forced cases. This1114

means that the bias exhibited in the strongly-forced cases is real bias, while the weakly1115

forced cases may be interpreted as exhibiting essentially no bias.1116

The LES also use an “implicit closure” technique whereby advection is discretized with1117

a 9th order weighted essentially non-oscillatory scheme (or WENO for short) and no explicit1118

subgrid-scale closure is added.1119

A6 Effect of Stokes drift on LES results1120

Next we turn to the effect that including the Stokes drift profile described in section A41121

has on our LES results. The inclusion of Stokes drift in our LES is an attempt to make1122

them slightly more realistic. In other words, we hypothesize that calibrating CATKE to LES1123

without surface waves would generally lead to a shallow bias in mixed layer depth prediction1124
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Figure A2. Resolution dependence of 24-hour LES.

with CATKE — since surface waves are always present above real wind-forced ocean surface1125

boundary layers.1126
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Figure A3. Stokes drift dependence of 12-hour LES.

This notion is corroborated by figure A6, which shows the horizontally-averaged buoyancy1127

profiles for 4 LES in the 12 hour suite, with and without Stokes drift. As expected, the1128

inclusion of Stokes drift produces more mixing and makes the boundary layer deeper. The1129

effect of Stokes drift is minor in the case of weak and medium winds (leftmost and second1130

from left panels). In the strong wind (and rotating) case, the inclusion of Stokes drift makes1131

the boundary layer 20 meters deeper, or around 20% of the total. In the strong wind, no1132

rotation case, the case without Stokes drift completely fails to transition to the turbulence.1133

(A small amount of cooling would probably be required to produce turbulence in the strong1134

wind, no rotation case without Stokes drift.)1135

Appendix B Split-explicit turbulent kinetic energy time stepping and1136

vertical discretization1137

The time discretization is a little non-trivial since we step forward velocity and tracers1138

first, then step forward TKE and also use substepping/split–explicit scheme for TKE. In the1139
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single column case, we integrate equations (13)–(15) with the backward Euler scheme1140

un+1 − un

∆t
= ∂z

(
κnu∂zu

n+1
)
, (B1)1141

vn+1 − vn

∆t
= ∂z

(
κnu∂zv

n+1
)
, (B2)1142

cn+1 − cn

∆t
= ∂z

(
κnc ∂zc

n+1
)
, (B3)1143

where ∆t is the time step and the superscripts n or n+ 1 indicate the time-level at which1144

the quantity is evaluated. For the TKE equation (19), we introduce a substepping scheme1145

that uses M short time-steps ∆t/M to integrate e between n to n+ 1,1146

em+1 − em

∆t/M
= ∂z

(
κme ∂ze

m+1
)

︸ ︷︷ ︸
transport

+κnu
1
2

(
∂zu

n + ∂zu
n+1
)
· ∂zun+1

︸ ︷︷ ︸
shear production

+w′b′
m−

√
em

ℓmD
em+1

︸ ︷︷ ︸
dissipation

, (B4)1147

where the superscripts m and m + 1 denote the substep level. The buoyancy flux w′b′
m

1148

in (B4) is discretized in time using the conditionally-implicit “Patankar trick” (Burchard,1149

2002), such that1150

w′b′
m

=

{
−κnc ∂zbn+1 when ∂zb

n+1 ≤ 0

−κnc ∂zbn+1 em+1

em when ∂zb
n+1 > 0

(B5)1151

which improves the stability of (B4) and keeps e from becoming too negative. Note that1152

shear production is not updated during substepping. The time discretization of the shear1153

production term in (B4), which incorporates shear measured at the time step n and n+ 1,1154

also follows Burchard (2002) and requires an algorithm that stores the velocity field at time1155

step n, stepping forward momentum and tracers, and then substepping forward e.1156

We discretize u, v, c, and e on a staggered vertical grid (not shown), with all variables1157

vertically located at cell centers — a deviation from Blanke and Delecluse (1993), Burchard1158

(2002), or Madec et al. (2017) who place u, v, c at vertical cell centers but TKE at vertical1159

cell interfaces where the diffusivity is computed (otherwise known as “w-locations”). Because1160

κc, κc, and κe are located at vertical cell interfaces, this discretization means that e must1161

be reconstructed from cell centers to cell interfaces to compute κu, κc, and κe according1162

to (12). The vertical spatial discretization of the shear production term is derived from the1163

mean kinetic energy equation following Burchard (2002), but adapted to our cell-centered1164

placement of e. We use a tridiagonal solve to advance u, v, c, e in (B1)–(B4) over each time1165

step of substep, treating both diffusion and linear terms in (B4) implicitly.1166

Appendix C A posteriori calibration1167

We use Ensemble Kalman Inversion (EKI; Iglesias et al., 2013) to calibrate CATKE.1168

EKI is a gradient-free and computationally inexpensive method for solving nonlinear inverse1169

problems. EKI supposes that a forward map G(C) can predict uncertain observations Y1170

given a set of free parameters C,1171

Y = G(C) + η , (C1)1172

where η ∼ N (0,M) is normally-distributed random uncertainty with covariance M. Four1173

objects appear in the model-data relation (C1),1174

1. Observations Y with M discrete elements Ym. In this paper, each Ym represents1175

a state variable like velocity U or temperature Θ at a particular depth and time,1176

computed from LES data by horizontal averaging and vertical coarse-graining, and1177

then normalized and shifted to have zero mean and unit variance.1178

2. A parameter set C with P free parameter values Cp.1179
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3. A forward map G(C) whose elements Gm(C) predict the observation Ym. G(C) rep-1180

resents a model that maps a parameter set C to the space of observations Y. In1181

our case, constructing G(C) requires forward evaluations of 63 single column models1182

parameterized by C, each predicting the evolution of horizontally-averaged variables1183

in 21 LES at 2-, 4-, and 8-meter resolution.1184

4. Random Gaussian uncertainty η ∼ N (0,M) with covariance M associated with both1185

Gm(C) and Ym. η conflates uncertainty in Y with “structural” uncertainty associated1186

with imperfect forward maps G.1187

The elements of Y are the discrete values of the horizontally-averaged temperature1188

and velocity fields output from 21 LES coarse-grained to three grids with uniform 2-, 4-,1189

and 8-meter spacing. Each physical field is shifted, normalized, and weighted before being1190

assembled into Y. Each forward map G (C) involves 3× 21 = 63 simulations to find U , V ,1191

and Θ profiles for each LES case at the two model vertical resolutions.1192

C1 Ensemble Kalman dynamics1193

Ensemble Kalman Inversion uses a dynamical system that governs the evolution of an1194

ensemble of N parameter sets, or “particles”, C
def
= [C1,C2, · · · ,CN ]. Here the superscript1195

ω denotes the “particle index”, which varies across the ensemble: Cωp is the pth parameter1196

value of the ωth particle.1197

Each parameter set Cω obeys the ordinary differential equation1198

d

dT
Cω = −K(C,G) Γ−1 (Gω − Y) , (C2)1199

where Gω def
= G(Cω) is the forward map computed with the parameter set Cω, and T is1200

the “pseudotime”. The matrix K(C,G) in (C2) is the covariance matrix estimated from1201

ensemble statistics at pseudotime T , thus coupling the evolution of the ensemble. For two1202

“ensemble matrices” A and B, where A for example is constructed from an ensemble of1203

vectors [A1
i , A

2
i , · · · , ANi ], the elements Kij(A,B) are defined1204

Kij (A,B)
def
=

1

N

N∑
ω=1

(
Aωi − ⟨A⟩i

)(
Bωj − ⟨B⟩j

)
, with ⟨C⟩i

def
=

1

N

N∑
ω=1

Cωi . (C3)1205

For nearly-linear maps Gm(C) ≈ HmpCp, (C2) reduces to1206

d

dT
Cω ≈ −K(C,C)∇CΦ

ω , (C4)1207

where Kpq(C,C) is the P × P parameter-parameter covariance matrix (Kovachki & Stuart,1208

2019). The “EKI objective” Φω associated with parameter set ω appears in (C4), where1209

Φ(G,Y;C) def
=
∥∥M−1/2 [G(C)− Y]

∥∥2 , (C5)1210

and Φω
def
= Φ(G,Y ;Cω). Φ in (C5) is a functional of G that measures the uncertain discrepancy1211

between G(C) − Y. The system (C4) minimizes Φ using gradient descent preconditioned1212

with K(C,C), where the gradients ∇CΦ are estimated from the parameter ensemble.1213

We integrate the EKI dynamical system (C2) in using a forward Euler discretization,1214

Cω
∣∣
n+1

= Cω
∣∣
n
−∆T

[
K(C,G)M−1 (Gω − Y)

]
n
, (C6)1215

where n is the pseudotime iteration, ∆T is a pseudotime step size, and ω ∈ [1, Ne] is the1216

“ensemble index” out of an ensemble with Ne members. The adaptive step size ∆T is chosen1217

at each iteration according to Kovachki and Stuart (2019). The initial parameter sets Cω at1218

T = 0 are generated by randomly sampling the priors listed in table 3.1219
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EKI is practical for two reasons: (i) it does not require explicit gradients of G with1220

respect to parameters C, and (ii) the forward map evaluations Gω — the most expensive1221

part of integrating (C2) — are independent and thus easily parallelized. Reason (i) means1222

EKI is applicable to any simulation framework with changeable parameters C. Reason (ii)1223

means that considerable yet distributed resources can be leveraged efficiently: given sufficient1224

distributed resources, the cost of a single EKI iteration depends only on the cost of a single1225

forward map evaluation, independent of ensemble size. This parallelizability benefits small1226

problems such as calibration in a single column context and is decisive for large problems1227

like global ocean calibration.1228

C2 Uncertainty covariance1229

We associate the uncertainty M with the numerical fidelity of the large eddy simulations1230

by defining1231

M = cov
(
[Y1m Y2m Y4m]

)
, (C7)1232

where Y1m,Y2m,Y4m denote observations obtained from LES with 1-, 2-, and 4-meter vertical1233

resolution.1234

C3 Constrained and unconstrained parameters1235

The dynamics (C6) require normally-distributed parameters Cp, which precludes the1236

imposition of strict bounds such as non-negativity. We therefore introduce the forward and1237

inverse transforms,1238

Cp = log
b− C̃p
C̃p − a

and C̃p = a+
b− a

1 + exp(Cp)
, (C8)1239

between “constrained” physical parameters C̃ that are bounded between (a, b), and uncon-1240

strained parameters C. The transformation (C8) implies that if Cp is normally-distributed1241

then C̃ is bounded by (a, b) with a scaled, shifted logit-normal distribution.1242

We denote the scaled, shifted logit-normal distribution bounded by (a, b) as B(a, b) and1243

use it to model the distribution of all of CATKE’s free parameters. The distributions B(a, b)1244

formulated so their corresponding normal distributions have zero mean and unit variance.1245

When integrating (C6), the normally-distributed parameter sets Cω are transformed into1246

their physical space counterparts C̃ω via (C8) when evaluating Gω = G(Cω) and thus solving1247

the single column equations (13)–(15) and (19).1248

C4 Failure criterion handling1249

Poor parameter choices Cω often lead to failed simulations of the single column sys-1250

tem (13)–(15) and (19). In that case the forward map Gω is not informative and must be1251

ignored when performing the Euler step (C6).1252

We first define the median and the “median absolute deviation” of the EKI objective1253

samples, Φω
def
= Φ(G,Y;Cω),1254

Φ̃
def
= median (Φω) and s

def
= median

(∣∣Φω − Φ̃
∣∣) , (C9)1255

We mark a particle ω as “failed” if1256

Φω > Φ̃ + 3s . (C10)1257

This excludes both non-finite and just “particularly anomalous” Φω.1258
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Open Research Section1259

This work relied on the open-source software LESbrary.jl (Wagner et al., 2023) and1260

Oceananigans.jl (Ramadhan et al., 2020) to run the LES, Oceananigans.jl to run calibration1261

simulations, and ParameterEstimocean.jl (Wagner et al., 2022) and EnsembleKalmanPro-1262

cesses.jl (Dunbar et al., 2022) for the Ensemble Kalman Inversion. Visualizations were made1263

using Makie.jl (Danisch & Krumbiegel, 2021). Scripts for performing the calibration are avail-1264

able at the GitHub repository github.com/glwagner/SingleColumnModelCalibration.jl.1265
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