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Abstract

We present a novel data-driven framework for estimating the response of higher-
order moments of nonlinear stochastic systems to small external perturbations. The
classical Generalized Fluctuation–Dissipation Theorem (GFDT) links the unper-
turbed steady-state distribution to the system’s linear response. Standard imple-
mentations rely on Gaussian approximations, which can often accurately predict
the mean response but usually introduce significant biases in higher-order mo-
ments—such as variance, skewness, and kurtosis. To address this limitation, we
combine GFDT with recent advances in score-based generative modeling, which en-
able direct estimation of the score function from data without requiring full density
reconstruction. Our method is validated on three reduced-order stochastic models
relevant to climate dynamics: a scalar stochastic model for low-frequency climate
variability, a slow–fast triad model mimicking key features of the El Niño-Southern
Oscillation (ENSO), and a six-dimensional stochastic barotropic model capturing
atmospheric regime transitions. In all cases, the approach captures strongly nonlin-
ear and non-Gaussian features of the system’s response, outperforming traditional
Gaussian approximations.

Significance Statement

Predicting how complex stochastic systems respond to small external perturbations is
central in physics, climate science, and engineering. We combine the Generalized Fluctu-
ation–Dissipation Theorem with score-based generative modeling (KGMM) to accurately
capture mean and higher-order (variance, skewness, kurtosis) responses—even in strongly
non-Gaussian regimes.
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1 Introduction

Understanding how a physical system responds to external perturbations is a central chal-
lenge in physics, climate science, and engineering [Palmer, 2001, Strogatz, 2018]. In many
applications, one is not only interested in the shift of the system’s mean state under a
small forcing but also in changes in its higher-order moments—such as variance, skewness,
and kurtosis. Capturing responses in higher-order moments is crucial for reconstructing
the perturbed steady-state probability distribution and for building a principled, causal
framework to analyze how perturbations shape the system’s overall response, including
distributional tails [Majda et al., 2010b]. For instance, in climate science, assessing the
full redistribution of probability (e.g., changes in the frequency of heat waves or cold
spells) is as crucial as estimating an average temperature increase [IPCC, 2013].

A key theoretical tool in this context is the Generalized Fluctuation-Dissipation The-
orem (GFDT), which relates the steady-state probability density function (PDF) of a
system to its linear response under a time-dependent external perturbation [Baldovin
et al., 2020, Cooper and Haynes, 2011, Ghil and Lucarini, 2020, Giorgini et al., 2024b,
Majda et al., 2005, 2008b]. In principle, GFDT offers a route to predict how the entire
distribution of an observable changes without explicitly perturbing the system. However,
practical application of the GFDT is hindered by the difficulty of accurately estimating
the full, often high-dimensional and non-Gaussian, steady-state PDF. In many cases the
Gaussian approximation—where the system’s PDF is replaced by a Gaussian distribu-
tion sharing the same mean and covariance—is employed. It has been shown empirically
that the Gaussian approximation has high-skill in predicting responses in the mean even
in nonlinear systems (e.g. Baldovin et al. [2020], Gershgorin and Majda [2010], Gritsun
and Branstator [2007]) but introduces systematic biases for higher-order moments [Majda
and Qi, 2019, Majda et al., 2008c].

Recent advances in data-driven methodologies offer promising alternatives. In partic-
ular, score-based generative modeling has emerged as a powerful approach for sampling
from complex distributions by learning the gradient of the log-PDF (the score function)
directly from data, thereby circumventing the need for full density estimation [Song et al.,
2021]. Moreover, modern clustering-based algorithms have shown that statistical prop-
erties of high-dimensional systems can be estimated more reliably from coarse-grained
observational data than the systems’ detailed dynamical trajectories [Falasca et al., 2025,
2024, Giorgini et al., 2024a, 2025b, Souza, 2024a,b, Souza and Silvestri, 2024].

These data-driven advances are particularly valuable in settings where directly solving
the full partial differential equations (PDEs) governing a system’s dynamics is computa-
tionally prohibitive or even unknown. This limitation has motivated the development of
reduced-order models, which aim to reproduce the essential statistical behavior of com-
plex systems at a fraction of the computational cost. In climate science, in particular,
stochastic reduced-order models have played a central role in both understanding and
forecasting system behavior [Hasselmann, 1976, Kondrashov et al., 2015, Lucarini and
Chekroun, 2023, Majda et al., 1999, 2001, Penland, 1989, Penland and Sardeshmukh,
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1995, Strounine et al., 2010]. For example, reduced Markovian models have been suc-
cessfully employed to derive effective dynamics for slow variables in multiscale systems
[Chen et al., 2019, Giorgini et al., 2022, Keyes et al., 2023, Kravtsov et al., 2005, Majda
et al., 2008a]. These approaches facilitate our understanding of high-dimensional dynam-
ical systems by focusing on core processes while also improving computational efficiency.
Furthermore, reduced-order models also shed light on how non-Gaussian features and
intermittent behavior emerge from interactions between resolved and unresolved scales.

Building on these ideas, recent studies have combined the GFDT framework with
generative score-based techniques to improve predictions of the mean response in high-
dimensional systems [Giorgini et al., 2024b]. In this paper, we build on the framework
presented in [Giorgini et al., 2024b] by constructing higher-order response functions for
nonlinear reduced-order stochastic models relevant to climate science. Specifically, we
examine the response of the mean (first moment) and the second, third, and fourth central
moments of an observable to small external perturbations. By incorporating information
from these higher-order moments, our approach provides an accurate estimate of the
perturbed steady-state PDF, which is crucial for understanding changes in variability
and the occurrence of extreme events. We test the approach on the following reduced-
order stochastic models of increasing complexity: a one-dimensional stochastic model
for low-frequency climate variability, a slow–fast triad model designed to capture key
features of the El Niño-Southern Oscillation (ENSO), and a six-dimensional stochastic
barotropic model that reproduces atmospheric regime transitions [Charney and DeVore,
1979, Crommelin et al., 2004, De Swart, 1988]. Our results demonstrate that the new
method can accurately reproduce the steady-state PDFs and outperforms traditional
Gaussian approximations in capturing higher-order moment responses.

The remainder of the paper is organized as follows. In Section 2, we review the deriva-
tion and practical implementation of the GFDT and we detail the extraction of the score
function from data through a recently proposed clustering-based algorithms. In Sec-
tion 3, we present numerical experiments on the three reduced-order models, highlighting
the improved skill of our approach in capturing higher-order responses compared to the
standard Gaussian approximation. Section 4 focuses on limitations and practical con-
siderations of our proposal in the presence of partial observations from high-dimensional
dynamical systems. Finally, Section 5 summarizes our findings and discusses directions
for future work.

2 Methods

In this section, we present the theoretical and computational foundations of our approach.
We begin by deriving the Generalized Fluctuation-Dissipation Theorem (GFDT), which
forms the basis for computing response functions in nonlinear stochastic systems. We
describe the KGMM (K-means Gaussian Mixture Modeling) algorithm from [Giorgini
et al., 2025a] for data-driven estimation of the score function, which plays a central role
in implementing the GFDT for this work. Additional details on the maximum entropy
framework used to reconstruct perturbed steady-state distributions from estimated mo-
ment responses are provided in the Appendix.
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2.1 The Generalized Fluctuation-Dissipation Theorem

We consider a stochastic dynamical system governed by

ẋ(t) = F (x) + σ ξ(t), (1)

where x ∈ Rn, F (x) is a deterministic drift term, σ is the noise amplitude matrix, and
ξ is a standard Gaussian white noise process. The system evolves towards a steady state
described by a probability density ρS(x), which satisfies the stationary Fokker–Planck
equation:

L0 ρS(x) = 0, (2)

where the Fokker–Planck operator L0 is defined as

L0 ρ(x) = −∇ ·
(
F (x) ρ(x)

)
+

1

2
∇∇⊤ :

(
D ρ(x)

)
, (3)

with D = σσ⊤ the diffusion matrix, and : denoting the double contraction of tensors.
We now introduce a small, time-dependent perturbation that factorizes into a small

spatial component u(x) and a temporal modulation f(t), so that the dynamics become

ẋ(t) = F (x) + u(x) f(t) + σ ξ(t). (4)

This perturbation induces a small variation in the probability density, denoted δρ(x, t),
which satisfies, to first order in u(x),

∂δρ(x, t)

∂t
= L0 δρ(x, t) + f(t)L1 ρS(x), (5)

with the perturbation operator L1 defined by

L1 ρ(x) = −∇ ·
(
u(x) ρ(x)

)
. (6)

By formally integrating this linearized equation, the resulting first-order correction to
the expectation value of any observable A(x) is given by

⟨δA(t)⟩ =
∫ t

0

f(t′)
〈
A(x(t))B(x(t′))

〉
0
dt′ =

∫ t

0

R(t− t′) f(t′) dt′, (7)

where the conjugate observable B(x) is

B(x) =
L1 ρS(x)

ρS(x)
= −

∇ ·
(
u(x) ρS(x)

)
ρS(x)

, (8)

and R(t) = ⟨A(x(t))B(x(0))⟩0 is the linear response function, by definition equal to the
response to an impulse (delta) perturbation f(t) = δ(t) Risken [1996]. ⟨·⟩0 denotes the
expectation with respect to the unperturbed steady-state distribution ρS(x).

Applying the product rule, we obtain

∇ ·
(
u(x) ρS(x)

)
= ρS(x)∇ · u(x) + u(x) · ∇ρS(x), (9)

and thus the conjugate observable takes the explicit form

B(x) = −∇ · u(x)− u(x) · ∇ ln ρS(x). (10)
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Note that climate studies traditionally focus on the specific case of changes in the
external forcing as u(x)i = ei, further simplifying Eq. 10 to B(x) = −∇ ln ρS(x).

Often the unperturbed steady state is approximated with a multivariate Gaussian. In
this case we have

ρS(x) =
1√

(2π)n detΣ
exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
, (11)

which yields

ln ρS(x) = −1

2
(x− µ)⊤Σ−1(x− µ) + const, (12)

and consequently,
∇ ln ρS(x) = −Σ−1(x− µ). (13)

Substituting into the expression for B(x), we obtain

B(x) = −∇ · u(x) + u(x)⊤Σ−1(x− µ). (14)

In this case, it is straightforward to verify that, under external forcings u(x)i = ei the
response function reduces to R(t) = ⟨A(x(t))Σ−1(x− µ)(0)⟩0, as commonly adopted in
climate studies. Note that while the analytical score is approximated using that of a Gaus-
sian distribution, the ensemble averages ⟨·⟩0 are still obtained using the original data and
therefore over the system’s steady state distribution. This approach differs from linear
inverse model strategies (e.g., Penland [1989]), which assume a time-invariant Gaussian
measure from the outset. Such models would yield zero response to any quadratic func-
tional, such as the variance (see Majda et al. [2010a]). Because of this distinction, the
approximation discussed here is sometimes referred to as a quasi-Gaussian approximation
in the literature. For simplicity, we will simply refer to it as the Gaussian approximation
throughout this work.

2.2 Score Function Estimation via KGMM

The application of the Generalized Fluctuation-Dissipation Theorem (GFDT) requires
knowledge of the score function ∇ ln ρS(x), i.e., the gradient of the logarithm of the
system’s steady-state distribution. For the vast majority of systems of interest, this
quantity cannot be obtained analytically and must be inferred from data. To this end, a
hybrid statistical-learning method called KGMM (K-means Gaussian Mixture Modeling)
has been recently proposed Giorgini et al. [2025a] for accurate and efficient score function
estimation in systems with low-dimensional effective dynamics.

The KGMM method is based on the observation that a probability density can be
approximated as a Gaussian Mixture Model (GMM):

p(x) =
1

N

N∑
i=1

N (x | µi, σ
2I), (15)

where the µi are data samples drawn from the steady-state distribution ρS(x), and σ2

is the (isotropic) covariance amplitude of the Gaussian kernels. The corresponding score
function reads

∇ ln p(x) = − 1

σ2

N∑
i=1

N (x | µi, σ
2I)(x− µi)

p(x)
. (16)
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While Eq. (16) provides a direct expression for the score, it becomes numerically unsta-
ble for small σ, as the density and its derivative become highly sensitive to local data
fluctuations.

KGMM circumvents this issue by exploiting a probabilistic identity: define x = µ+σz
with z ∼ N (0, I). Giorgini et al. [2025a] derived the following relation in the continuous-
data limit:

∇ ln p(x) = − 1

σ2
E[z | x], (17)

i.e., the score function is the conditional expectation of the kernel displacements z,
rescaled by σ2.

This identity is computed empirically using the following steps:

1. Generate perturbed samples xi = µi + σzi, where µi are the original data points
and zi ∼ N (0, I).

2. Partition the perturbed samples {xi} intoNC clusters {Ωj} using bisecting K-means
clustering.

3. For each cluster Ωj with centroid Cj, compute the conditional expectation

E[z | x ∈ Ωj] ≈
1

|Ωj|
∑

i:xi∈Ωj

zi. (18)

4. Estimate the score function at the centroid Cj as

∇ ln ρS(Cj) ≈ − 1

σ2
E[z | x ∈ Ωj]. (19)

5. Fit a neural network to interpolate the discrete estimates {(Cj,∇ ln ρS(Cj))} over
the full domain.

The number of clusters NC must therefore be chosen carefully to balance the trade-off
between resolution and noise. Empirically, a useful scaling relation is

NC ∝ σ−d, (20)

where d is the effective dimensionality of the dataset and σ is the kernel width. This
scaling ensures that clusters remain small enough to capture local gradient structure
while still containing enough points for robust averaging.

The choice of σ plays a central role in the KGMM algorithm. Small values of σ
yield estimates of the score function that are closer to the one associated with the true
steady-state distribution, as the perturbation introduced by the convolution kernel be-
comes negligible. However, this comes at the cost of increased statistical noise, since the
displacements become more sensitive to sample variability. Conversely, larger values of
σ smooth out the fluctuations, leading to more stable estimates but of a score function
associated with a more strongly perturbed distribution. The optimal value of σ thus
balances these competing effects—reducing bias while maintaining statistical reliability.

To interpolate the discrete score estimates (Cj,∇ ln ρS(Cj)), we train a fully con-
nected feedforward neural network with two hidden layers, using the Swish activation
function between layers and a linear activation on the output layer. The models and
training parameters are:
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• Scalar model: Hidden layers of 50 and 25 neurons; batch size 32; 2000 epochs.

• Slow–fast triad model: Hidden layers of 100 and 50 neurons; batch size 32; 200
epochs.

• Barotropic model: Hidden layers of 128 and 64 neurons; batch size 128; 300
epochs.

All networks are trained using the Adam optimizer with mean-squared-error loss on the
predicted score.

3 Results

In what follows, we estimate the mean (first moment) and the second, third, and fourth
central moments of the perturbed steady-state distribution for three representative non-
linear stochastic systems of increasing complexity: a scalar stochastic model for low-frequency
climate variability, a slow-fast triad model mimicking essential features of the El Niño-Southern
Oscillation (ENSO), and a six-dimensional stochastic barotropic model capturing atmo-
spheric regime transitions. These systems serve as ideal testbeds for evaluating the ac-
curacy of different approximations to the Generalized Fluctuation-Dissipation Theorem
(GFDT) in predicting higher-order responses under small external perturbations.

For each system, we construct the response functions as defined in Eq. (7). Specifically,
we focus on impulse response functions for the mean (first moment) and the second, third,
and fourth central moments of the invariant distribution by choosing as observables x,
(x−µ)2, (x−µ)3, and (x−µ)4, where x denotes the system state and µ its unperturbed
mean. Specifically, we assess three distinct approaches: (i) a data-driven method that
constructs the response using the score function estimated via the KGMM (K-means
Gaussian Mixture Modeling) algorithm; (ii) a Gaussian approximation, which assumes
the steady-state distribution to be multivariate Gaussian, fully characterized by its mean
and covariance; and (iii) a reference or “ground truth” response. In the case of the
scalar triad model, the ground truth has been derived analytically in Majda et al. [2009b]
from the known stationary distribution. For the slow-fast triad and stochastic barotropic
models, where an analytic form of the score is not available, the ground truth response
is computed numerically by performing ensemble integrations of both the unperturbed
and perturbed systems and evaluating the change in the moments, see for example the
Appendix in Boffetta et al. [2003] or Giorgini et al. [2024b]. In all examples, we normalize
the data such that the unperturbed time series in each dimension has zero mean and unit
variance. This preprocessing step facilitates the comparison across variables and models,
and ensures that the Gaussian approximation always corresponds to a standard normal
distribution. For systems subject to a state-independent perturbation, as in the first
and third examples, we normalize the response functions by the perturbation amplitude,
rendering them independent of its magnitude.

In settings where direct computation of response functions is infeasible—either be-
cause the underlying equations are unknown or integration is prohibitively expensive—the
only reliable way to validate the KGMM-estimated score (and, by extension, any response
predictions) is to compare observed and KGMM-generated marginal PDFs. Concretely,
we simulate the Langevin dynamics

ẋ(t) = s(x(t)) +
√
2 ξ(t), (21)

7



where s(x) = ∇ ln ρS(x) is the score learned via KGMM. The degree to which the
simulated marginals reproduce the empirically observed steady-state PDFs thus provides
the sole stringent diagnostic that the score has been learned accurately and that any
inferred response functions can be trusted. For this reason, we have also compared the
marginal steady-state PDFs obtained from these Langevin simulations directly against
the empirical distributions, offering an independent check on the fidelity of the estimated
score function.

This comparative analysis allows us to quantify the extent to which generative score
modeling improves the accuracy of higher-order response predictions relative to tradi-
tional linear approximations, especially in regimes characterized by strong non-Gaussianity
and nonlinear interactions.

3.1 Scalar Stochastic Model for Low-Frequency Climate Vari-
ability

We consider a one-dimensional stochastic model for low-frequency climate variability.
The model was originally derived by Majda et al. [2009b] using stochastic reduction
techniques developed in Majda et al. [1999, 2001]. For further details on the derivation
and relevant literature, we refer the reader to Section 4b of Majda et al. [2010a]. This
reduced-order stochastic model has been successfully used to fit nonlinear scalar dynamics
from low-frequency data of a general circulation model and has also served as a testbed
for fluctuation-dissipation theorem (FDT) analyses, see for example [Majda et al., 2010a,
2009a] in the context of the Gaussian approximation. The model is given by the scalar
nonlinear stochastic differential equation:

ẋ(t) = F + ax(t) + bx2(t)− cx3(t) + σ1 ξ1(t) + σ2(x)ξ2(t), (22)

where ξ1(t) and ξ2(t) are independent standard white noise processes. In the present
work, we consider a closely related scalar model introduced in [Chen et al., 2019], which
builds upon similar principles but features no multiplicative noise, that is, σ2(x) = 0.
This leads to a simplified, purely additive stochastic model of the form:

ẋ(t) = F + ax(t) + bx2(t)− cx3(t) + σ ξ(t), (23)

where ξ(t) is standard white noise. This scalar nonlinear model retains the essential
deterministic structure of the reduced triad system, while simplifying the stochastic com-
ponent, thus making it an ideal testbed for analytical and numerical studies.

The coefficients of the model used in this work are listed in Table 1. The input pa-
rameters of the KGMM algorithm (see Section 2.2) are set to σ = 0.05 and NC = 348.

Table 1: Parameters of the stochastic scalar model.

a −0.0222
b −0.2
c 0.0494
F 0.6
σ 0.7071
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A key motivation for considering this model is the availability of an analytical ex-
pression for the score function, defined as the gradient of the logarithm of the stationary
distribution:

s(x) =
d

dx
log ρS(x) =

2

σ2

(
F + ax+ bx2 − cx3

)
. (24)

Correspondingly, the stationary probability density function (PDF) of the system can
be written in closed form as:

ρS(x) = N−1 exp

[
2

σ2

(
Fx+

a

2
x2 +

b

3
x3 − c

4
x4

)]
, (25)

where N is a normalization constant ensuring that ρS(x) integrates to 1.

We now construct impulse response functions through GFDT asR(t) = ⟨A(x(t))B(x(0))⟩0,
and remind the reader that ⟨·⟩0 denotes the expectation with respect to the unperturbed
steady-state distribution ρS(x). We consider the simple case where the conjugate ob-
servable is defined as B(x) = −s(x) = − d

dx
log ρS(x). To estimate the score function

s(x) we consider three different strategies: (i) analytically from Eq. (24), (ii) using the
KGMM method, and (iii) under the Gaussian approximation. In Figure 1, we compare
the unperturbed steady-state PDF as well as the first four moment response functions
obtained with these three approaches. The results show that the score function estimated
via KGMM yields a nearly perfect match with the analytic response, both in terms of
the steady-state PDF and the responses of the mean (first moment) and the second,
third, and fourth central moments. This confirms the ability of KGMM to accurately
reconstruct the score function. As expected from previous studies (e.g. [Baldovin et al.,
2020]), the Gaussian approximation provides a very good estimation for changes in the
mean. However, significant biases are present in the second, third and fourth centralized
moments, reflecting its inability to capture the non-Gaussian features of the underlying
dynamics.

Figure 1: Left: True unperturbed PDF (blue) compared with a normal Gaussian (black)
and the PDF obtained integrating Eq. (21) with the KGMM score function (red). Right:
Response functions predicted via GFDT. The true response functions (blue) are obtained
using the analytic score function and are compared with the ones obtained using the
KGMM score function (red) and the linear approximation (black).
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3.2 Slow-Fast Triad Model and Application to ENSO

The second test case considers the slow-fast triad model from [Thual et al., 2016]:

u̇1 = −duu1 − ωu2 + τ + σu1 ξ1(t),

u̇2 = −duu2 + ωu1 + σu2 ξ2(t),

τ̇ = −dτ τ + στ (u1) ξ3(t),

(26)

with parameters listed in Table 2. The input parameters of the KGMM algorithm (see
Section 2.2) are set to σ = 0.05 and NC = 7353.

du 0.2
ω 0.4
dτ 2.0
σu1 = σu2 0.3
στ (u1) 1.5(tanh(u1) + 1)

Table 2: Parameters of the slow-fast triad model.

This model is designed to mimic multi-scale interactions characteristic of the El Niño-
Southern Oscillation (ENSO), where the slow variables u1 and u2 represent the large-scale
ocean-atmosphere state, and the fast variable τ represents rapid wind bursts. Differently
from the previous Section, here we are interested in studying the system’s response to per-
turbations in the damping coefficient of the fast variable τ . Specifically, the perturbation
is applied as:

δdτ = −0.2dτ = −0.4. (27)

This modification increases the memory time of τ (the wind bursts), thereby enhancing
its strength. Physically, this perturbation is interpreted as an increase in Madden-Julian
oscillation or monsoon activity in the Western Pacific, which in turn modifies the behav-
ior of ENSO. A direct consequence of this perturbation is an increase in the variance of
u1 and u2, leading to a higher occurrence of strong ENSO events.

In this case, the conjugate observable needs to be considered in its full formulation as
B(x) = −∇·u(x)−u(x) ·∇ ln ρS(x). Unlike the triad model, no analytic expression for
the steady-state distribution or score function is available for this system. Therefore, the
ground truth response was computed by directly simulating an ensemble of both unper-
turbed and perturbed systems and evaluating the change in moments (see e.g. Giorgini
et al. [2024b]). These serve as a benchmark for validating the GFDT-based predictions.
As in the previous example, we compared the response of the mean (first moment) and the
second, third, and fourth central moments of each variable using three methods: GFDT
with the KGMM-estimated score function, GFDT under the Gaussian linear approxi-
mation, and the numerical ground truth. We also compared the unperturbed marginal
steady-state PDFs predicted by KGMM to the empirically observed distributions by in-
tegrating the Langevin equation in Eq. 21.

The results are reported in Figure 2. In all three dimensions, the score function
estimated by KGMM allows the GFDT framework to accurately reproduce the response
functions and the steady-state PDFs. The agreement with the numerically computed
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ground truth is excellent, indicating that the KGMM method successfully reconstructs
the non-Gaussian statistical structure of the system. In contrast, the linear approximation
yields visible discrepancies in all moments, especially for the strongly skewed and heavy-
tailed distribution of τ .

Figure 2: Comparison of unperturbed marginal steady-state PDFs (leftmost column) and
responses of the first four moments (remaining columns) in the slow-fast triad model for
variables u1, u2, and τ (rows). Response functions are shown as a function of time lag.
Predictions obtained via GFDT using the KGMM-estimated score function (red), the
Gaussian approximation (black), and numerical ground truth (blue) are reported.

3.3 Stochastic Barotropic Model for Atmospheric Regime Tran-
sitions

The large-scale circulation of the atmosphere often exhibits persistent patterns, such
as zonal and blocked flow regimes, with abrupt transitions between them. These fea-
tures can be captured through low-order models that isolate the essential mechanisms
responsible for regime persistence and transitions [Charney and DeVore, 1979]. The six-
dimensional model considered here is based on a Galerkin truncation of the barotropic
vorticity equation on a β-plane channel with topography. The original formulation was
introduced by Charney and DeVore [Charney and DeVore, 1979], and the specific version
used here follows a slightly modified form proposed by De Swart [De Swart, 1988]. This
model has been widely studied, particularly in the context of stochastic regime dynam-
ics [e.g., Crommelin et al., 2004, Dorrington and Palmer, 2023]. It retains two zonal
modes and two pairs of wave modes, enabling nonlinear interactions between the waves
and the mean flow, as well as capturing the influence of topographic forcing. Physi-
cally, the model describes the evolution of the barotropic streamfunction field, subject to
planetary rotation, Newtonian damping toward a prescribed zonal background state, and
orographic forcing. The six prognostic variables represent amplitudes of selected Fourier
modes, and the equations contain linear terms corresponding to damping and rotation,
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as well as quadratic nonlinearities encoding advective interactions. The system supports
multiple equilibria and intermittent transitions between weakly chaotic and more persis-
tent quasi-stationary states. By adding stochastic forcing, one can probe how unresolved
processes affect the stability and persistence of regimes [Dorrington and Palmer, 2023].
The stochastic version of the model takes the form:

ẋ1 = γ̃1x3 − C(x1 − x∗
1) + σξ1(t),

ẋ2 = −(α1x1 − β1)x3 − Cx2 − δ1x4x6 + σξ2(t),

ẋ3 = (α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5 + σξ3(t),

ẋ4 = γ̃2x6 − C(x4 − x∗
4) + ε(x2x6 − x3x5) + σξ4(t),

ẋ5 = −(α2x1 − β2)x6 − Cx5 − δ2x4x3 + σξ5(t),

ẋ6 = (α2x1 − β2)x5 − γ2x4 − Cx6 + δ2x4x2 + σξ6(t).

(28)

Here, x1 and x4 denote the amplitudes of zonal modes, while the remaining variables
represent wave modes. The parameter C denotes the damping rate, and (x∗

1, x
∗
4) are the

prescribed zonal background states. Stochastic forcing enters additively through inde-
pendent Gaussian white noise processes ξi(t) with common amplitude σ.

The values of the coefficients used in this study are summarized in Table 3, corre-
sponding to a system with channel aspect ratio b = 1.6, β = 1.25, and topographic forcing
strength γ = 0.2. The forcing terms x∗

1 = 0.95 and x∗
4 = −0.76095 define the equilibrium

zonal profile. The input parameters of the KGMM algorithm (see Section 2.2) are set to
σ = 0.05 and NC = 30309.

Table 3: Model coefficients for the six-dimensional stochastic barotropic system.

Parameter Value Description

α1 0.86322463 Nonlinear advection (mode 1)
α2 0.81394451 Nonlinear advection (mode 2)
β1 0.89887640 Coriolis effect (mode 1)
β2 0.48780488 Coriolis effect (mode 2)
δ1 1.38115941 Triad interaction (mode 1)
δ2 −0.12882575 Triad interaction (mode 2)
γ̃1 0.19206748 Orographic forcing (mode 1)
γ̃2 0.07682699 Orographic forcing (mode 2)
γ1 0.05395154 Orographic damping (mode 1)
γ2 0.04684573 Orographic damping (mode 2)
ε 1.44050611 Wave-wave interaction
C 0.1 Newtonian relaxation rate
x∗
1 0.95 Zonal background forcing (mode 1)

x∗
4 −0.76095 Zonal background forcing (mode 2)

σ 0.01 Noise amplitude

We now construct impulse response functions through GFDT asR(t) = ⟨A(x(t))B(x(0))⟩0,
and remind the reader that ⟨·⟩0 denotes the expectation with respect to the unper-
turbed steady-state distribution ρS(x). As in Section 3.1 we consider the case where
B(x) = −s(x) = −∇ log ρS(x). To estimate the score function s(x) we consider three

12



different strategies: the Gaussian linear approximation, the KGMM-estimated score func-
tion, and direct numerical simulations of the perturbed system, which serve as the ground
truth. Figure 3 shows the results for all six state variables of the model, comparing the
unperturbed steady-state PDFs (leftmost column) and the temporal evolution of the re-
sponse of the mean (first moment) and the second, third, and fourth central moments
(remaining columns) for a state-independent, impulse perturbation applied to x1.

The KGMM-based GFDT predictions exhibit remarkable agreement with the numer-
ical results across all variables and moment orders. The Gaussian approximation shows
good estimates for changes in the mean but significant deviations for higher order mo-
ments. This is especially true for responses in the perturbed variable x1, where the effects
of the perturbation are most pronounced. These discrepancies confirm the limitations of
the Gaussian approximation in representing nonlinear and asymmetric responses, which
are typical in regime-transition dynamics such as blocking or wave-mean flow interac-
tions. Notably, the KGMM approach captures both sharp peaks and heavy tails in the
marginal distributions, which are characteristic of systems with intermittent transitions.
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Figure 3: Comparison of the unperturbed marginal steady-state PDFs (left column) and
response functions of the first four moments (remaining columns) for all six variables
in the stochastic barotropic model. Results are shown for GFDT with score function
estimated via KGMM (red), the linear Gaussian approximation (black), and numerical
ensemble simulations (blue).
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4 Discussion: Limitations and practical considera-

tions

Our results show that when (i) a large amount of data is available and (ii) the full state
vector x(t) is known, the system’s probability density response to small external pertur-
bations can indeed be recovered from the Generalized Fluctuation-Dissipation Theorem
(GFDT), as expected from theoretical arguments [Castiglione et al., 2008]. Specifically,
response functions can be estimated with high precision by leveraging recent advances in
score-based generative modeling, such as the KGMM algorithm. The experiments pre-
sented here represent a valuable first step toward an equation-free framework for studying
how the probability distribution of real-world dynamical systems responds to small ex-
ternal perturbations.

However, several limitations and caveats must be considered before applying these
tools to high-dimensional complex systems. A straightforward practical limitation arises
when only relatively short time series are available. As with many machine learning-
based approaches, the performance of our method depends heavily on the sample size,
which in turn is determined by the complexity and temporal scales of the phenomena
under study. Even with access to infinitely long time series, a more fundamental issue
remains in data-driven approaches: in most real-world scenarios, we rarely observe (or
even know) the full state vector of the system. Instead, we typically have access to only a
small subset of variables—a projection of the full dynamics. This longstanding problem,
emphasized at least since Onsager and Machlup (1953) [Onsager and Machlup, 1953],
remains a central concern in modern studies [Baldovin et al., 2018, 2020, Cecconi et al.,
2012, Hosni and Vulpiani, 2018]. One might be tempted to address this challenge using
the Takens embedding theorem [Takens, 1981], reconstructing the underlying dynamics
from partial observations. However, this strategy is severely limited in practice: it is not
applicable to stochastic systems and becomes rapidly infeasible as the system dimension-
ality increases; see Baldovin et al. [2018], Cecconi et al. [2012], Lucente et al. [2022] for
an in-depth discussion. For these reasons, Takens-based approaches are not a reliable
option for studying many real-world systems.

A more promising approach—aligned with the perspective taken in this work and
with a long history in climate science—is to exploit the multiscale structure of real-
world dynamical systems and focus on coarse-grained effective dynamics. In practice, in
certain cases, it is possible to identify slow variables that exhibit low-dimensional effective
dynamics. The cumulative effect of unresolved fast variables on the slow ones can then
be modeled as stochastic forcing terms [Hasselmann, 1976, Lucarini and Chekroun, 2023,
Majda et al., 2008c, Penland, 1989]. Response theory can then be applied by focusing
on the coarse-grained dynamics [Lacorata and Vulpiani, 2007]. Accordingly, the success
of the proposed method in real-world systems depends critically on the choice of the
proper variables used to study the phenomena of interest; see also Appendix A in Falasca
et al. [2025]. In practice, these choices are informed by physical intuition and prior
knowledge, and they are shaped by the specific coarse-graining and data preprocessing
procedures applied. Consequently, a purely “black box” approach is inadequate: the
inference of responses functions in complex systems through data-driven methods requires
deep physical insight and strong domain expertise.
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5 Conclusions

In this work, we have introduced a framework for constructing higher-order response
functions in nonlinear stochastic systems by combining the Generalized Fluctuation-
Dissipation Theorem (GFDT) with score-based generative modeling. Our method cir-
cumvents the limitations of traditional Gaussian approximations by estimating the score
function directly from data using the KGMM algorithm, allowing for accurate prediction
of moment responses and perturbed probability density functions (PDFs) in non-Gaussian
regimes.

We validated our approach on three prototypical systems of increasing complexity:
a scalar stochastic model for low-frequency climate variability, a slow-fast triad model
representative of El Niño-Southern Oscillation (ENSO) dynamics, and a six-dimensional
stochastic barotropic model capturing atmospheric regime transitions. In all cases, the
GFDT framework equipped with KGMM-estimated scores outperformed the linear Gaus-
sian approximation, especially in capturing higher-order statistical responses and recon-
structing the full perturbed PDF.

These results showcase the potential of incorporating data-driven score estimates in
high-dimensional nonlinear systems, particularly when higher-order statistical features
and extreme event predictions are of paramount importance. Future work will focus on
extending this approach to larger-scale systems with partial observations and on explor-
ing alternative generative models to further enhance the robustness and computational
efficiency of the response predictions.

Appendix: Reconstruction of the Perturbed Steady-

State Distribution via the Maximum Entropy Princi-

ple

In this appendix, we describe how the perturbed steady-state probability distributions
can be reconstructed from the moment responses obtained through the GFDT framework.
This methodology complements the main analysis presented in Section 3 by providing a
way to visualize the full distributional response rather than just individual moments.

The GFDT framework allows us to estimate the perturbed steady-state probability
density function ρ1(x) without directly simulating the perturbed system. Theoretically,
this distribution satisfies the stationary Fokker–Planck equation associated with the per-
turbed dynamics:

L0ρ1(x) + L1ρS(x) = 0, (29)

where L0 is the unperturbed Fokker–Planck operator and L1 encodes the effect of the
small perturbation, as defined in Section 2.1.

Rather than solving this partial differential equation directly, we infer the change in
the distribution from its effect on a finite set of observables. In particular, we apply
GFDT to observables corresponding to the first N powers of the system state x, such as
x, xx⊤, x⊗3, and so on. This allows us to estimate the perturbation-induced variation
in the first N moments of the steady-state distribution. For instance, the change in the

16



first two moments is given by:

δm1 = E1[x]− E0[x] = E1[x]− µ = ⟨δx⟩,
δm2 = E1[(x− E1[x])(x− E1[x])

⊤]− E0[(x− µ)(x− µ)⊤]

≈ E1[(x− µ)(x− µ)⊤]− E0[(x− µ)(x− µ)⊤] = ⟨δ[(x− µ)(x− µ)⊤]⟩.
(30)

These quantities provide indirect but crucial information about how the perturbed
steady-state distribution ρ1(x) differs from the unperturbed one ρS(x), even in the ab-
sence of direct samples from the perturbed dynamics.

To reconstruct the perturbed distribution ρ1(x) consistent with the estimated mo-
ments, we invoke the maximum entropy principle. Among all candidate distributions
satisfying the known moment constraints, this principle selects the one with maximal
Shannon entropy, ensuring the most unbiased estimate compatible with the available
information [Mead and Papanicolaou, 1984].

Under this principle, the perturbed probability density function takes the exponential
form:

ρ1(x) = exp

(
N∑
i=0

λi · ϕi(x)

)
, (31)

where ϕi(x) denotes the basis functions associated with the i-th moment (e.g., monomials,
tensor products), and λi are Lagrange multipliers enforcing the moment constraints.
These coefficients are obtained by solving the system:∫

Ω

ϕi(x) ρ1(x) dx = mi, for i = 0, 1, . . . , N, (32)

where m0 = 1 ensures normalization, and m1, . . . ,mN are the perturbed moments com-
puted via GFDT. In this work, we restrict the basis functions ϕi(x) to be multivariate
polynomials, corresponding to the moment tensors of increasing order defined in Eq. (30).

This system of nonlinear integral equations generally lacks a closed-form solution
and is solved numerically, for instance via iterative root-finding or variational methods.
In our implementation, we first generate multiple candidate starting points based on
heuristic estimates of key statistics (mean, variance, skewness, etc.) derived from the
target moments. These candidates are then optimized in parallel using the Nelder–Mead
method, complemented by preliminary LBFGS refinement to minimize the discrepancy
between computed and desired moments. The best candidate undergoes a regularized
Newton–Raphson refinement—where the Jacobian of the moment equations is computed
using adaptive quadrature—to ensure rapid convergence toward the solution. Finally,
a polished LBFGS optimization step is applied to further reduce the error. Once the
multipliers λi are known, the resulting maximum entropy distribution provides an ap-
proximation of the perturbed steady-state PDF that incorporates the estimated changes
in mean, variance, and higher-order moments.

In this study, the Maximum Entropy Principle is used primarily as a proof of concept,
applied to the scalar stochastic model discussed in Section 3.1. This application allows
us to validate the accuracy of our GFDT predictions by comparing the reconstructed
perturbed distributions against ground truth distributions obtained analytically.

For this demonstration, we introduced a constant perturbation in the forcing term of
the scalar model, shifting F → F+ϵ, and studied the response of the first four moments as
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a function of the perturbation amplitude ϵ. Figure 4 shows both the moment responses
and the reconstructed PDFs for different values of ϵ. The results confirm that up to
ϵ = 0.06, the responses predicted using both the analytic score function and the KGMM-
estimated score via GFDT match the true moment variations very closely, validating that
the linear-response regime holds within this range. For larger perturbations, increasing
discrepancies appear, highlighting the breakdown of the linear response assumption.

The reconstructed perturbed PDFs shown in the bottom row of Figure 4 were es-
timated using the maximum entropy principle, based on the first two moments for the
Gaussian approximation and the first four moments for the analytic and KGMM-based
approaches (for ϵ = 0.06, 0.08), and the first three moments for ϵ = 0.10, 0.12. For these
larger values of ϵ, including more moments in the maximum entropy reconstruction leads
to convergence towards a multimodal distribution, which would be impossible to capture
with a Gaussian approximation. Indeed, for ϵ = 0.12, the algorithm used to reconstruct
the perturbed PDF from the Gaussian approximation failed to converge.

While this approach worked well in the low-dimensional setting of the scalar model,
its application to the higher-dimensional models presented in this paper would be com-
putationally demanding and is beyond the scope of the current work. Nevertheless, the
results from this simple case clearly demonstrate how the KGMM-based GFDT approach
outperforms traditional linear approximations in predicting both the individual moments
and the overall shape of perturbed probability distributions.
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Figure 4: Top row: First four statistical moments—mean, variance, skewness, and kurto-
sis—as a function of the perturbation amplitude ϵ, obtained using the analytic expression
of the PDF, and GFDT with the analytic (blue), linear (black) and KGMM (red) score
function. Bottom row: Comparison between the true perturbed PDF (green) and the
PDFs reconstructed via the maximum entropy method (see Section 2.2) and GFDT for
ϵ = 0.06, 0.08, 0.10, and 0.12. We compare three approaches: reconstruction using the
analytic score (blue), the KGMM-estimated score (red), and a linear (Gaussian) approx-
imation (black).
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