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Key Points:9

• A novel, GPU-tailored algorithm for finite-volume ocean dynamical cores yields10

unprecedented time-to-solution11

• By following GPU-specific implementation recipes, it is possible to obtain efficient12

dynamical cores for GPU.13

• Routine mesoscale-resolving climate simulations are feasible with GPU-based ocean14

models15

Abstract16

We describe an ocean hydrostatic dynamical core implemented in Oceananigans optimized17

for Graphical Processing Unit (GPU) architectures. On 64 A100 GPUs, equivalent to 1618

computational nodes in current state-of-the-art supercomputers, our dynamical core can sim-19

ulate a decade of near-global ocean dynamics per wall-clock day at an 8-kilometer horizontal20

resolution; a resolution adequate to resolve the ocean’s mesoscale eddy field. Such efficiency,21

achieved with relatively modest hardware resources, suggests that climate simulations on22

GPUs can incorporate fully eddy-resolving ocean models. This removes a major source of23

systematic bias in current IPCC coupled model projections, the parameterization of ocean24

eddies, and represents a major advance in climate modeling. We discuss the computational25

strategies, focusing on GPU-specific optimization and numerical implementation details that26

enable such high performance.27

Plain Language Summary28

State-of-the-art ocean models used in climate studies cannot resolve small-scale turbulent29

features like eddies, which are important for accurate climate projections. We introduce30

a new ocean dynamical core implemented in the Julia library Oceananigans, designed to31

run efficiently on Graphical Processing Units (GPUs). Using relatively modest hardware32

resources, this model can simulate a decade of global ocean dynamics in a day at a scale that33

resolves turbulent eddies. This efficiency suggests that climate simulations on GPUs could34

transition to fully resolving ocean eddies, which are currently only partially captured due35

to computational limitations on Central Processing Units (CPUs). Resolving these eddies36

is expected to improve the accuracy of climate projections by addressing biases associated37

with the poor representation of ocean eddies. We discuss the computational strategies and38

implementation details behind this high performance.39
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1 Introduction40

Most climate projections use ocean components with a lateral resolution of 25 to41

100 kilometers. With such coarse resolutions, the most energetic features of Earth’s ocean —42

such as the Gulf Stream, or the Southern Ocean’s rich field of mesoscale eddies — are either43

completely unresolved or, at best, partially resolved (Hewitt et al., 2020). As a result, these44

crucial features must be fully or partly represented by approximate parameterizations (Gent45

& Mcwilliams, 1990), which compromise the fidelity of the simulated ocean circulation, the46

ocean uptake of atmospheric heat and carbon, and the overall accuracy of climate projections47

(e.g., Griffies et al. (2015); Roberts et al. (2018); Chassignet et al. (2020); Constantinou and48

Hogg (2021); Couespel et al. (2024)). In this paper, we describe a new ocean dynamical49

core, or “dycore” that is optimized for general-purpose Graphics Processing Units (GPUs).50

Leveraging GPUs allow us to run the dynamical core on modest compute resources with51

unprecedented time-to-solution, significantly improving the efficiency of ocean simulations.52

This step-change in efficiency means that higher-resolution ocean simulations for the same53

computational cost are possible — enabling climate projections that resolve, rather than54

parameterize, ocean mesoscale turbulence.55

Eddy-resolving simulations of the global ocean, which require lateral resolutions of56

O(10 km) or finer (Hallberg, 2013), are now routine for scientific purposes (e.g. Kiss et57

al., 2020; Ding et al., 2022). But climate projections require ensembles of hundreds of58

simulations to calibrate climate model free parameters (Schneider et al., 2017), to explore59

outcomes under the range of plausible future emission scenarios, and to disentangle internal60

and forced variability (Kay et al., 2015). Using O(10 km) lateral resolution — 2–10⇥ finer61

than the current state-of-the-art — increases computational costs by ⇠10–100⇥ due to the62

corresponding increase in both horizontal degrees of freedom and the smaller time-steps63

needed to simulate mesoscale turbulence. Finally, we note that while 2–10⇥ increase in ocean64

model resolution yields major improvements by resolving a new regime of oceanic motion, the65

same is not true for a similar increase in atmospheric model resolution. For example, Palmer66

(2014) argues that atmospheric models require 1 km resolution to achieve a step change67

accuracy by resolving deep convection, 100⇥ finer than the typical 100 km resolution used for68

climate projection. Since using 1 km atmospheric model resolution would require increasing69

computational efficiency 100⇥ over the current state-of-the-art, major improvements to70

climate model fidelity cannot be achieved merely by optimizing an atmospheric dynamical71

core for GPUs.72

CPU-based climate models have historically realized efficiency gains because of advances73

in CPU fabrication technology (Schaller, 1997). But because advances in fabrication tech-74

nology have stagnated, the days of “free lunch” are over (Sutter et al., 2005). Fortunately,75

because CPUs are not purpose-designed for scientific computing — they are limited at a76

structural level by design choices that are specifically detrimental to structured computations77

like machine learning and climate modeling (Vance, 2009) — efficiency gains are achievable78

through other advances in processor design and instruction set architecture. Enter general-79

purpose GPUs, which represent a decade of such innovations targeting precisely the kinds80

of structured computations encountered in both machine learning and computational fluid81

dynamics. GPU-based advances in scientific computing both enabled (Raina et al., 2009;82

Krizhevsky et al., 2017) and continue to be driven by the ongoing AI revolution.83

While there has been progress in developing GPU-based atmospheric dycores (Fuhrer84

et al., 2018; M. Taylor et al., 2023), the potential for GPUs to accelerate ocean dycores85

has received limited attention. In particular, most novel GPU atmospheric dycores solve86

the compressible form of the Navier Stokes equations, which benefits particularly from a87

spectral element discretization (Souza et al., 2023; Fuhrer et al., 2018; M. Taylor et al.,88

2023). The requirements for efficient GPU implementation are different for the compressible89

Navier-Stokes equations compared to the Primitive equations, typically solved in ocean90

dycores (for example, handling sound waves as opposed to having a free surface solver). One91

notable exception is the work by Kochkov et al. (2024), which presents a fully differentiable92
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Figure 1: Vertical vorticity on on September 1st as simulated with the near-global configu-
ration at a lateral resolution of 1/12� degree after 20 years of integration (top left) and at a
1/48� degree-resolution after a 1 year integration (bottom left). To the right, the insets zoom
on particularly energetic regions of the ocean: the Aghulas and the East Australian Currents.
While major ocean currents with widths of 10-100 km are resolved in both simulations, the
sharp density fronts and associated currents that develop at the ocean surface in winter at
scales between 1-10 km (the ocean weather) are only resolved by the model at a 1/48� lateral
resolution. On September 1 — spring in the southern hemisphere and fall in the northern
hemisphere — such sharp frontal features populate the Southern ocean, but are suppressed
in the Northern hemisphere.

primitive equation atmospheric model written in JAX for TPUs. However, despite the use93

of primitive equations, Kochkov et al. (2024) uses spectral numerics that cannot be used in94

ocean models due to the presence of lateral boundaries. Regarding ocean dycores, P. Wang95

et al. (2021) document a translation of the LiCOM3 ocean model to GPUs, obtaining a96

speedup of 4⇥ to 6⇥ on a node with 4 GPUs compared to the CPU counterpart running on97

the same node with 32 CPU cores. However, given the difference in hardware and execution98

models between GPU and CPU, to achieve optimal performance both the model structure99

and the algorithmic implementation must be redesigned to adapt the model to the new100

architecture. Häfner et al. (2021) go one step further and design an ocean dycore called Veros101

for GPUs from scratch and achieve good computational performance. However, Veros was102

designed to be differentiable through the JAX framework, preventing granular performance103

optimization (Rackauckas, 2023).104

In this paper, we take a different approach and implement, from a clean state, an105

algorithm for solving the hydrostatic Boussinesq equations in ocean dycores on GPUs106

with the objective of optimizing computational efficiency. The equations we implement,107

standard for ocean modeling, are written down in section 2. In section 3, we describe the108

implementation of the dycore, which includes numerical optimization and software design109

central to achieving performance on both single and multiple GPUs. In section 4, we describe110

a quasi-realistic near-global ocean setup that we use to test the algorithm’s performance. The111

performance results, described in section 5, are promising: at a horizontal resolution of 1/12th112

degree our dycore achieves 10 simulated years per day (SYPD) on just 64 Nvidia A100 GPUs.113

A visualization of the solution is shown in figure 1. Section 6 showcases solutions of the114
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particular mesoscale-resolving model configuration used to measure performance. Finally,115

we summarize our conclusions and discuss implications for the future of climate modeling in116

section 7.117

2 Hydrostatic Boussinesq dynamical core equations118

Our dycore solves both the Boussinesq equations under the hydrostatic approximation,119

relevant for large-scale global ocean modeling. The dycore uses a linear free surface and120

a geopotential vertical coordinate. The implementation of a non-linear free surface and121

z? coordinates is ongoing and should not hamper the performance of the dycore. The122

prognostic variables are the horizontal velocities, u and v, the sea-surface height elevation ⌘,123

the conservative temperature T , and the absolute salinity S. A non-linear equation of state124

relates the buoyancy of seawater b to temperature, salinity, and depth, i.e., b = F(T, S, z)125

(Roquet et al., 2015).126

For notation convenience we split the three-dimensional velocity vector u into the127

horizontal component uh and the vertical component w,128

u = u x̂+ v ŷ| {z }
def
=uh

+w ẑ , (1)

where (x̂, ŷ, ẑ) represents the basis of an orthogonal coordinate system with ẑ always pointing129

in the local upward direction. When at rest, the ocean’s sea surface is at z = 0. A spatially130

varying depth at z = �H(x, y), defines the ocean floor.131

With the above definitions, the equations for momentum, mass conservation, and132

sea-surface height elevation are:133

@tuh = �(⇣ + f)ẑ ⇥ uh �r
�
p+ 1

2uh · uh

�
� w@zuh| {z }

def
=Gu

�@z⌧ � gr⌘ , (2)

@zp = b , (3)

0 = r · uh + @zw , (4)

@t⌘ = w
��
z=0

, (5)

where f = 2⌦ sin� is the Coriolis parameter with ⌦ the Earth’s rotation rate and � the134

latitude, g is the gravitational acceleration, r = x̂@x + ŷ@y is the horizontal gradient, p135

is the kinematic pressure, b def
= �g(⇢/⇢0 � 1) is seawater buoyancy relative to a Boussinesq136

seawater reference density ⇢0, ⌘ the free-surface elevation as measured from rest-height z = 0,137

and ⇣ = ẑ · (r ⇥ u) is the vertical component of vorticity. We used the vector identity138

uh · ruh = ⇣ẑ ⇥ uh + r
�
1
2uh · uh

�
to rewrite the horizontal advection term in (2) in139

vector-invariant form. The vertical momentum stress is140

⌧ =

8
><

>:

⌧s , at the top surface
�⌫e@zuh , in the interior
⌧b , at the bottom boundary

(6)

where ⌧s the surface stress due to winds and ⌧b = �CDkuhkuh is quadratic bottom drag141

with coefficient CD. Vertical mixing of momentum by subgrid turbulence is represented as142

downgradient diffusion with a turbulent viscosity ⌫e.143

The vertical velocity is not a prognostic variable; instead it is diagnosed through the144

continuity equation (4). Using (4) and boundary conditions at the ocean’s bottom, we145

rewrite the free-surface evolution equation (5),146

@t⌘ = �r ·
Z 0

�H

uh dz

| {z }
def
=U

, (7)
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where we introduced a new two-dimensional variable, the depth-integrated or ‘barotropic’147

transport U . Thus, the evolution of ⌘ is complemented by the evolution of the barotropic148

transport that evolves according to the vertically-integrated horizontal momentum equation:149

@tU = �gHr⌘ +

Z 0

�H

Gu dz � ⌧s + ⌧b . (8)

The ocean dynamics described by (2), (3), (4), (7), and (8) involve two different150

timescales: a fast timescale that is related to the barotropic flow and the sea-surface height,151

and a slower timescale that is related to the depth-dependent flow (the “baroclinic” flow).152

For typical ocean conditions, the barotropic dynamics evolve about 30 times faster than the153

baroclinic dynamics.154

To resolve both the faster barotropic and slower baroclinic timescales we use a split–155

explicit algorithm (Gadd, 1978; Killworth et al., 1991). The barotropic two-dimensional156

evolution equations for the sea-surface height and the barotropic transport are advanced157

using shorter time steps within the longer baroclinic time step that is used for the fully three-158

dimensional baroclinic dynamics. In particular, all terms grouped as Gu in (2) are assumed159

to evolve slowly relative to the last term that involves the sea-surface height gradients.160

This is not formally true for the Coriolis and the nonlinear terms that are characterized by161

some fast-evolving dynamics, but it is a reasonable approximation when running mesoscale162

resolving simulations that require time-steps shorter than five minutes.163

In conclusion, the hydrostatic ocean model thus comprises of (2), (3), (4), (7), and (8),164

together with evolution equations for the tracers, which are advected by the total flow (1):165

@tc = �r · (uhc)� @z(wc)| {z }
def
=Gc

�@zJ
c , (9)

where c denotes temperature T , salinity S, or any other tracer. The vertical tracer flux is:166

Jc =

8
><

>:

Jc

s
, on the top boundary

�e@zc , in the interior
Jc

b
, on the bottom boundary

(10)

where Jc

s
is the flux of c at the ocean surface, while Jc

b
is the bottom flux, and the tracer is167

mixed in the vertical at a rate given by the turbulent diffusivity e.168

2.1 Spatial and temporal discretization169

We discretize the governing equations in a finite volume framework on an Arakawa170

staggered C-grid (Arakawa & Lamb, 1977). We employ a second-order spatial discretization171

for the pressure terms, the continuity equation, the vertical transport, as well as the gradients172

in (7) and (8). The horizontal transport terms are implemented using a seventh-order173

weighted essentially non-oscillatory (WENO) scheme. The WENO scheme adapts to local174

flow and tracer gradients and thus removes the need for explicit stabilizing viscosity or175

diffusivity. The momentum advection follows the new WENO implementation described176

by Silvestri et al. (2024); with the difference that the vertical advection term @z(wuh) is177

discretized using a second-order centered reconstruction scheme instead of a fifth-order178

WENO as described in the reference.179

Following the split-explicit algorithm described above, we denote the short barotropic180

step as �tS and the long baroclinic time step as �tL. Assuming �tL = N�tS , typically181

in ocean simulations, N ⇡ 30. In our simulations, we use N = 50 substeps and employ182

the minimal dispersion filter introduced by Shchepetkin and McWilliams (2005) to average183

barotropic variables over the substeps. The barotropic step �tS is calculated as to center184

the averaging filter at the new baroclinic time step, therefore N�tS > �tL. The baroclinic185
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dynamics are evolved using a pseudo Adams–Bashforth time-stepping method (formally186

first order) where the tendency used to evolve velocities and tracers at time step n+ 1 is187

extrapolated from the previous two time steps as188

Gn+1 =

✓
3

2
+ �

◆
Gn �

✓
1

2
+ �

◆
Gn�1 . (11)

where � = 0.1. This time-stepping scheme is not state-of-the-art due to the implicit diffusion189

used to stabilize the nonlinear term through the additional constant �. Nevertheless, it is a190

good starting point for GPU execution because it allows explicit calculation of the tendencies191

and reduces the requirement for memory allocation (see Section 3). However, the same192

characteristics apply to more sophisticated explicit time-stepping schemes with higher order193

accuracy, like low-storage Runge-Kutta schemes, which we plan to implement in future work.194

The barotropic sub-stepping is performed using a Forward–Backward scheme in the following195

fashion196

⌘m+1 = ⌘m ��tSr ·Um , (12)

Um+1 = Um ��tS

✓
gHr⌘ �

Z 0

�H

Gn+1
u

dz � ⌧n+1
s

+ ⌧n+1
b

◆
, (13)

where Gn+1
u

, ⌧n+1
s

, and ⌧n+1
b

— frozen during substepping — are extrapolated using the197

quasi-Adams-Bashforth scheme shown in eq. (11). As we show in Section 3 and Figure 7,198

the number of substeps is irrelevant with respect to performance, as the two-dimensional199

computation of the free surface is extremely lightweight. Therefore, contrary to the baroclinic200

mode, where a better time-stepping scheme could be implemented, probably leading to a201

performance improvement, more sophistication in time discretization for the barotropic mode202

is not warranted on GPUs. Finally, the vertical mixing, which involves large diffusivity terms,203

is evaluated implicitly column-wise with a backward Euler time-stepping scheme by applying204

a tri-diagonal solver.205

3 GPU-tailored implementation of the hydrostatic Boussinesq equations206

The ocean dynamical core we present is implemented in Oceananigans (Ramadhan207

et al., 2020), an open source library that solves both the hydrostatic and nonhydrostatic208

Boussinesq form of the incompressible Navier–Stokes equations in Julia (Bezanson et al., 2017).209

Oceananigans was built from scratch in the Julia language, using a design philosophy rooted210

in the proven finite-volume principles for ocean dycores pioneered by MITgcm (Marshall211

et al., 1997). Starting from a clean slate allowed us to adopt implementation practices212

optimized for GPUs that differ from methodologies prevalent in ocean models optimized for213

CPUs. We note that the techniques described in this section are not necessarily new with214

regard to GPU computing. The GPU optimization process, following a standard bottleneck215

identification and analysis procedure, has been described a number of times for different216

software and algorithms (e.g., see Micikevicius (2010)). Moreover, many CFD softwares217

have adopted GPU-specific optimization techniques like those described in this section and218

obtained efficient execution on GPUs (Costa et al., 2021; Räss et al., 2019; Sætra, 2013).219

However, we describe here the application of such techniques specifically in the framework of220

an ocean model.221

GPUs excel at executing algorithms that can be highly parallelized, such as computational222

fluid dynamics. The smallest parallel GPU units, called threads, run concurrently, enabling223

the simultaneous processing of multiple operations. Threads are organized into groups called224

thread blocks that can read and write into a shared global memory (DRAM), the primary225

storage space for GPU variables with a slow input/output access. For efficient management226

and execution, threads are further grouped into sets of 32, referred to as “warps”. A single227

scheduling unit manages each warp, adhering to the Single Instruction, Multiple Thread228

(SIMT) execution model. This model ensures that all threads in a warp execute the same229

instruction at the same time. Functions executed on GPUs are called “kernels”. Kernels are230
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launched on a “thread-block” grid, with threads that execute in parallel following the SIMT231

model (NVIDIA Corporation, 2010).232

In this section, we describe the implementation details of Oceananigans’ hydrostatic algo-233

rithm and illustrate how the computational approach makes efficient use of GPU architectures.234

The algorithm comprises four “macro-areas”,235

@tuh = Gu � @z⌧ � gr⌘ , (14)

@zp = b , (15)

0 = r · uh + @zw , (16)

@t⌘ = w
��
z=0

, (17)

@tc = Gc � @zJ
c , (18)

where236

1. red terms in (14) and (18) refer to the calculation of the tendency of the three-237

dimensional prognostic variables, including horizontal velocities and tracers;238

2. blue terms in (14) and (18) refer to the execution of the implicit vertical diffusion239

through a backward Euler step, achieved by inverting a tri-diagonal matrix;240

3. green terms in (14) and (17) refer to the update of the barotropic velocities and the241

sea-surface elevation using a barotropic solver, and242

4. yellow terms in (15) and (16) refer to the computation of the diagnostic variables,243

such as vertical velocity, hydrostatic pressure, and diffusivities.244

Solving (14)–(18) on GPUs necessitates mapping a kernel onto a parallel thread-block245

configuration. Notably, a significant portion of computational resources is allocated to246

calculating the tendency terms. This computation inherently lends itself to parallelization,247

as each computational cell is independent of others. Consequently, we opt to parallelize248

the tendency computation using a three-dimensional kernel, with each thread managing the249

calculations of a single computational cell.250

Conversely, implicit vertical diffusion involves inverting a tridiagonal matrix in the251

vertical direction. Therefore, a more suitable parallelization approach involves launching252

a two-dimensional kernel, where each thread is responsible for solving the linear system253

in a computational column. Since the linear system is solved entirely by one individual254

thread, the computation is effectively serial, allowing the use of fast algorithms developed255

for serial computation. In our case, we use a direct sweep (the Thomas algorithm) with256

forward elimination and backward substitution as described in Sakharnykh (2009). Since257

implicit diffusion operates in the vertical direction, where k (the vertical index) corresponds258

to the slowest moving index in memory, consecutive threads access consecutive i indices259

(corresponding to the zonal direction) leading to an improved coalescing of memory access.260

Barotropic dynamics are inherently two-dimensional, so the barotropic solver requires only261

two-dimensional kernels where each thread holds one computational cell. Finally, in the262

GPU implementation of the diagnostic variables’ computation, if a kernel necessitates263

vertical integration (e.g., vertical velocity and hydrostatic pressure), it is implemented as264

a two-dimensional kernel similar to implicit diffusion. If the computation is inherently265

three-dimensional (e.g., calculating a local diffusivity), a three-dimensional kernel is launched266

instead.267

3.1 Optimization of the memory footprint268

Modern GPU devices pair several thousand floating point units alongside a comparatively269

limited pool of high-bandwidth memory. An effective strategy for utilizing the GPU’s compute270
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resources is to increase the number of grid points assigned to each GPU by minimizing the use271

of temporary arrays. This approach, common in GPU-based software (Awan & Saeed, 2016;272

Jakob, 2019), results in a reduction of the dycore’s memory footprint but requires weighing273

trade-offs, especially the higher computational overhead from recalculating quantities that274

could be precomputed and stored in temporary memory. This tradeoff is dependent on the275

specific implementation, and each new GPU model should independently assess how much276

temporary memory to allocate. For example, in CPU-based ocean models, intermediate277

arrays are often used to store variables like spatially interpolated velocities for calculating278

advective transport terms, or vertical vorticity used for momentum advection. However,279

the number of such arrays scales with the number of variables, the terms in the equations280

being solved, and the dimensions, often dominating the code’s memory footprint. Here, we281

minimize the number of temporary arrays during model time-stepping to optimize GPU282

memory use, allowing larger problem sets on fewer GPUs — a critical consideration given283

GPUs’ limited high-speed memory.284

Figure 2: A code fragment that illustrates the point-wise, functional coding style used in
Oceananigans to compute the zonal component of the Gu term in the momentum equation (2).
The architecture-agnostic kernel syntax is made possible by the KernelAbstractions.jl library.

In Oceananigans, the tendency for each prognostic variable is calculated in a single285

kernel, with individual threads computing each grid cell’s contribution. This circumvents the286

need for extra intermediate arrays, as the tendency computation requires only the prognostic287

and few diagnostic variables. The result is significant kernel fusion, highly beneficial on GPUs288

(G. Wang et al., 2010), and a reduced memory footprint. Figure 2 illustrates a fragment of289

Julia code that evaluates the tendency of the u-velocity, i.e., the zonal component of Gu,290

in (2). The code fragment in figure 2 shows how all the tendency computations are performed291

pointwise without using intermediate variables. Characteristically, a double-precision 1/12th-292

degree horizontal resolution simulation with a hundred vertical levels requires around 150 GB293

of memory. Balaji et al. (2017) define bloat as the ratio of the total memory footprint to294

the ideal memory occupied by the prognostic variables. With 5 prognostic variables (u, v,295

T , S, and ⌘) totaling 25 GB, the excess memory is 125 GB, or an equivalent bloat of 5.0296

(note that the free surface ⌘ is two-dimensional). This value is relatively small compared297

to the bloat of a typical ocean model, ranging from 10 to 100 (Acosta et al., 2024). A298

large improvement in memory footprint (and probably performance) would be achieved299

by switching the computation to single precision. Oceananigans is capable of operating at300

different precision. However, the implementation is naive, that is, it does not compensate for301

the effect or the reduced precision in precision-dominated bottlenecks (Prims et al., 2019).302
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For this reason, we avoid encouraging single precision computations until we have verified303

and validated the dynamical core with 32-bit floats.304

The kernel in figure 2 also showcases that the Julia library KernelAbstractions.jl (Churavy305

et al., 2024) used in Oceananigans allows us to compose architecture-agnostic kernels that306

can seamlessly execute on either GPU and CPU platforms within the same code base, similar307

to kernels written using alternative libraries such as HIP (Gupta & contributors, 2024) or308

Kokkos (Christian et al., 2021).309

3.2 Sparse compute framework310

A warp executes one common instruction at a time, so full efficiency is realized when311

all 32 threads of a warp follow the same execution path. If threads of a warp diverge due312

to a data-dependent conditional branch, the warp executes all the paths entirely, disabling313

threads that are not on that path. This performance loss, unique to GPUs, is termed314

branch divergence. Branch divergence is typical of GPU-based solvers that include stochastic315

elements, for example, Monte Carlo solvers characterized by while loops with stopping316

criteria based on sampling of random numbers (Silvestri & Pecnik, 2019). However, given317

the deterministic nature of fluid dynamics computation, branch divergence is uncommon in318

GPU-based fluid dynamics software as, generally, divergent tasks are limited in size ans can319

be reduced to divergence-free implementations (Tran et al., 2017). However, the presence of320

boundaries and boundary conditions requires special care for boundary-adjacent grid points321

that can potentially lead to branch divergence.322

In our dynamical core, branch divergence can arise from two primary sources. Firstly,323

it can stem from the utilization of high-order numerical schemes for advection: the stencil324

reconstruction of the high-order numerical scheme is constrained to lower-order reconstruction325

near boundaries. Consequently, threads that manage cells near to land boundaries end up326

having to perform different computational tasks than the cells in the ocean’s interior. This327

potentially results in divergent executions within a warp. We have chosen to avoid branching328

by performing the same computation in each thread. This increases the compute time, hence329

a better separation of boundary versus interior threads ought to be explored to improve code330

performance.331

The second possible source of branch divergence arises from the representation of332

bathymetry. Oceananigans uses a structured mesh, where “land” cells below bathymetry are333

masked and the velocity components normal to the solid interfaces are set to zero. This334

approach, depicted in the algorithm on the top panel of figure 3, is commonly employed in335

structured ocean models. However, performance dramatically decreases on GPUs, where336

both branches are executed in the event of a diverging conditional. In practical terms, this337

entails launching threads for “land” cells that do not actively engage in the computation but338

unnecessarily occupy resources as they wait for the threads performing the computations in339

“ocean” cells. To address this issue, we implemented a “sparse compute” framework inspired by340

the approach with the same name described in Sætra (2013). Active cells, representing ocean341

cells participating in the computation, are identified and mapped during a preprocessing step.342

The map is stored in a one-dimensional list of active indices. Subsequently, the kernels are343

launched with a number of threads equivalent to the total number of active cells in the map.344

Within these kernels, the three-dimensional index is retrieved from the precomputed map,345

allowing the computation to proceed as usual. An example of a “sparse compute” kernel346

is shown on the bottom panel in figure 3. Note that, with this approach, we are trading347

branch divergence with possibly uncoalesced memory access, so the success of this framework348

depends on the ratio of “land” to “ocean” cells. By adopting this methodology, particularly349

in simulations like the global ocean where 42% of the grid cells are immersed, we achieved a350

notable speedup of up to 2⇥.351
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Algorithm 1: Divergent kernel launch

Algorithm 2: GPU-optimized kernel launch

Figure 3: Example of domain loop using a divergent kernel (top) where non-active “land”
cells stall while waiting for active “ocean” cells, and a GPU-optimized “sparse compute”
kernel (bottom).
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Figure 4: A schematic depicting the communication and computation layout of the parallel
implementation in a one-halo configuration. The tendencies in the interior cells (white)
are computed concurrently with the communication in the halo cells (orange). When the
communication finishes (typically before the completion of the interior computations), two
different kernels computing the tendencies in the boundary-adjacent cells are executed.

3.3 Scalable parallelization352

GPU execution of parallelizable tasks typically outperforms CPU execution due to the353

GPU’s inherent parallel processing capabilities. However, inefficient parallelization across354

multiple GPUs can lead to communication becoming the main bottleneck of simulation (Wei355

et al., 2023; Häfner et al., 2021). Consequently, achieving scalability on numerous GPUs356

poses greater challenges compared to CPU architectures and requires careful implementation357

of algorithmic logic to mitigate performance bottlenecks effectively.358

In ocean models, it is common to allocate additional cells on the boundaries of the domain,359

referred to as “halo” or “ghost” cells, which hold the results of neighboring processors. These360

results are typically communicated through a message-passing communication step (Marshall361

et al., 1997). In Oceananigans, we have implemented communication–computation overlap,362

hiding the cost of communicating halo regions behind kernel computations. Communication–363

computation overlap for the three-dimensional baroclinic variables uses the same straightfor-364

ward approach found in many high-performance GPU finite volume libraries, for example,365
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 ∂tη and ∂tU computed over interior cells and halos cells

number of halo cells:
H = number of substeps

Halos from East worker

η and U valid after 
H substeps  

η and U valid till 
H-2 substeps

Figure 5: A schematic depicting the computation layout of the parallel barotropic solver
in one dimension. The ⌘ and U equations are solved on the entire domain including halos,
with the number of halo cells equal to the number of subcycles (barotropic time steps).
After advancing through the subcycles, the values of ⌘ and U are valid only in the domain’s
interior.

Räss et al. (2019): splitting the large tendency computation into boundary-dependent and366

boundary-independent regions.367

A schematic of this process is shown in figure 4. This figure shows a two-dimensional368

domain split into four different regions (the southern boundary is not shown). The orange369

cells represent the “halo” cells. The interior domain is divided into three different kernels.370

White cells represent the “inner” region that is boundary-independent. The tendency in these371

cells can be computed while communication among GPUs is in progress. Boundary-dependent372

cells are colored green and blue. The kernels for computing tendencies in these regions,373

which depend on the halo cells, are launched after communication is completed. Note that374

figure 4 shows the simple case of second-order numerics where only one halo cell is required;375

for higher-order spatial discretizations the boundary-dependent regions are larger and the376

inner region decreases in size.377

As discussed in section 2, in hydrostatic ocean models with a free surface, the vertically-378

averaged, two-dimensional “barotropic” flow represents dynamics that evolve an order of379

magnitude faster than the three-dimensional “baroclinic” component. Therefore, the special380

“barotropic solver”, which is typically computationally cheap given that the problem is381

two-dimensional, is communication-intensive since the different cores (or GPUs, in our case)382

need to communicate at each substep. It is precisely because of this communication overhead383

that the barotropic mode in ocean models — whether using implicit or split-explicit solvers384

— constitutes a major bottleneck that accounts for between 40% (Häfner et al., 2021; Kang et385

al., 2021) and 60% (P. Wang et al., 2021; Hu et al., 2013) of the cost of a typical IPCC-class386

ocean simulation.387

To improve the scalability, we have adopted an optimization for the parallel barotropic388

solver tailored to GPUs, which might also increase efficiency in CPU-based ocean models.389

This optimization is particularly effective for memory-efficient code that allows many points390

on each GPU, in our case around 108 (see section 3.1). It involves trading a slight increase in391

computation for decreased communication latency by capitalizing on the two-dimensionality392

of the barotropic mode. In practice, we expand the horizontal extent of the halo region of393

barotropic variables to match the number of explicit substeps (typically between 30 and 50)394

and convert halo cells to active cells. This leads to an increase in the cost of barotropic395

computation because barotropic tendencies also computed in halo regions. However, since396

the barotropic solver is two-dimensional, the cost of this extra computation is negligible. On397

the other hand, by performing this optimization (as illustrated in figure 5) communication is398

necessary only once per baroclinic time step rather than every subcycle, thereby decreasing399

the communication frequency by 30 to 50 times. In addition, since vertical diffusion and400

the barotropic step are commutative, we can communicate the halos of the barotropic401

variables asynchronously while performing the implicit vertical diffusion step. As a result402

of the sparsity of communication enabled by our barotropic solver implementation, all403

communication operations can overlap with computational kernels. Consequently, for typical404
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Figure 6: Schematic depicting the algorithmic flow and the communication–computation
overlap.

ocean simulation domains, the cost of the barotropic solver diminishes to less than 10% of405

the total cost of a time step, as demonstrated in section 5.406

Figure 6 outlines the logic of Oceananigans’ hydrostatic algorithm, highlighting two407

main advancements compared to a classical CPU ocean model implementation: (1) dividing408

large tendency kernels and auxiliary computations into “inner” and “outer” kernels–typically409

not performed in CPU codebases but necessary for GPU computation; (2) concealing the410

communication of barotropic variables behind the implicit vertical diffusion by enlarging the411

barotropic halo regions to match the number of subcycles.412

4 Model configurations for performance testing413

We configured our ocean model in two setups to test its performance: a quasi-realistic414

near-global ocean configuration and a more simplified Double Drake configuration described415

by Ferreira et al. (2010). The Double Drake configuration consists of a 3 km-deep, flat-416

bottom ocean covering the full planet except for two one-degree wide walls extending417

from the northernmost latitude to 35� south and separated by 90� degrees in longitude.418

This configuration provides a less ambiguous test for weak scaling than the quasi-realistic419

configuration because the topography does not change when increasing problem size and420

number of GPUs.421

Both configurations use a latitude-longitude horizontal mesh extending from 75�S to422

75�N, with a z-coordinate vertical discretization using 100 vertical layers with thickness423

ranging from 2.5 m at the surface to 200 m at the bottom. Note that given the different depth424

of the setups, the maximum grid size is slightly different between the two. The buoyancy is425

calculated from T and S using a polynomial approximation to the TEOS-10 equation of state426

(Roquet et al., 2015). Vertical mixing by unresolved small-scale turbulence is parameterized427

through a vertical diffusivity and viscosity which are nonlinear functions of the Richardson428

number (see Appendix A). Horizontal mixing of momentum and tracers is implicit through429

the WENO implementation of the advective terms (Silvestri et al., 2024); no explicit lateral430

mixing is introduced. There is no sea ice component.431

The Double Drake configuration is forced with a zonal wind stress which depends only432

on latitude and mimics the actual zonal-wind stress acting on the Earth’s oceans. The433

buoyancy forcing is through a surface relaxation to a parabolic function of latitude. This434

setup is only used for performance and stability testing, so it has been integrated for only 1435

year. The configuration was run at different horizontal resolutions spanning 1/6� to 1/168�.436

The quasi-realistic configuration uses an ocean bathymetry interpolated from ETOPO1.437

The surface forcing is taken from the 1995 repeat-year daily fluxes interpolated from the438

ECCO2 CS510 product (Menemenlis et al., 2008). The wind stress is applied as a mechanical439

input in the surface layer. The temperature and salinity forcing are imposed as the sum of440
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the interpolated ECCO2 heat and salinity fluxes plus a restoring to the three-day averaged441

surface temperature and salinity ECCO2 fields with 90 and 45 meters per year piston442

velocities, respectively. Initial conditions for temperature and salinity are generated by443

interpolating the ECCO2 January, 1st, 1995 temperature and salinity fields onto the model444

grid. The velocity and the free surface field are initially at rest. To assess performance the445

model was run for 1000 time steps with varying horizontal resolution: 1/4�, 1/8�, 1/12�,446

1/48�, and 1/96�.447

To complement the performance results shown in section 5, the 1/12� resolution was448

integrated for a total of 20 years to showcase a mesoscale resolving solution. The baroclinic449

time step starts at 10 seconds during spinup and is progressively increased reaching 270450

seconds by the second month of simulation. We verified that 20 years is sufficient time for451

the upper ocean velocity to adjust to the density field and for mesoscale processes to reach452

quasi-equilibrium (Iovino et al., 2016; Ringler et al., 2013). In section 6 we show that the453

eddy statistics in this simulation compare favorably with observations and provide support454

for the eddy-rich capabilities of our ocean model.455

In addition to the 1/12� experiment, we have evolved a higher-resolution version (1/48�456

degree in the horizontal) for one simulated year, to demonstrate that the model can be run457

stably at even higher submesoscale resolving resolutions. Fig. 1 shows snapshots of vertical458

vorticity for the 1/12� and the 1/48� degree setups after one year of integration. The 1/12�459

model has a horizontal spacing � ⇡ 8 km which appears sufficient to capture the dominant460

mesoscale eddies, visible as anomalously positive or negative ⇣ patches with characteristic461

scales of 50-100 km in lateral extent. The 1/48� model has a horizontal spacing of � ⇡ 2 km.462

At this higher resolution, a rich sub-mesoscale eddy field fills the solution.463

Finally, we run a simulation at a 1� resolution configured and forced like the 1/12�464

resolution simulation and also run for a full 20 years. The only significant difference is that465

this simulation uses a 5th order WENO scheme for both tracers and momentum with an466

additional biharmonic dissipation with a grid-size dependent viscosity of the form ⌫4 = �4/⌧⌫ ,467

where ⌧⌫ is a timescale equal to 15 days and � the grid size. The baroclinic time step,468

limited by vertical advection, is set to 900 seconds. The 1� resolution simulation is too coarse469

to generate any eddies and is used as a comparison to illustrate the impact of the mesoscale470

eddy field on the large-scale ocean structure in the 1/12� resolution simulation.471

5 Performance results472

In this section, we report the performance of the dycore using the various model setups473

described above. The performance results shown in this section pertain only the dynamical474

core and not the I/O that will depend on the particular diagnostics required by users. Where475

not explicitly mentioned, the results are obtained on the NERSC supercomputer Perlmutter.476

Perlmutter is an HPE (Hewlett Packard Enterprise) Cray EX supercomputer that hosts four477

A100 GPUs with 40GB per node, linked through an NVLink3 interconnect.478

Figure 7 displays the output of the Nvidia profiler nsys for the 1/48� quasi-realistic479

setup on 256 A100 GPUs. This figure illustrates the actual relative time-step execution480

corresponding to the schematic depicted in figure 6, where the blue boxes delineate the481

timeline of kernels on a single GPU. Within figure 7, the pertinent algorithmic macro-areas482

are highlighted by black boxes, along with the send operations corresponding to the schematic483

shown in figure 6. Receive operations are not shown in the profiles. Notably, despite utilizing484

a large number of GPUs (256), the communication overhead remains minimal, highlighting485

the parallel scalability of the dynamical core.486

A summary of the information shown in figure 7 is presented for three different con-487

figurations in figure 8. Here, we illustrate the percentage of time spent in the execution488

of the various kernels for the quasi-realistic setup at 1/4� on 4 GPUs, 1/12� on 64 GPUs,489

and 1/48� on 256 GPUs. Consistent with previous results, the majority of computational490
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Figure 7: Algorithmic flow and communication–computation overlap in the quasi-realistic
ocean setup at 1/48� horizontal resolution and 100 vertical levels on 256 GPUs generated
using the Nsight system profiler. The receive operations are not shown.
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configurations.

resources are consumed by the tendency calculations, with the velocity kernels (u and v)491

occupying a slightly larger share of resources compared to the tracer kernels. Notably, owing492

to the implementation of the wide-halo barotropic solver, the barotropic step accounts only493

for a minimal proportion of resources in all configurations, and communication is completely494

overlapped with computation.495

Figure 9 depicts the performance of the time stepping kernels gathered using Nvidia’s496

compute profiler (ncu) in the Double Drake setup at 1/3� horizontal resolution on a single497

Titan V GPU. Performance is evaluated in terms of TFLOP per second against the arithmetic498

intensity of the kernel, which quantifies how many FLOPs per memory-retrieved byte are499

executed in the kernel. When the arithmetic intensity is insufficiently high, the kernel500

lacks the computational workload necessary to conceal the large latency of memory fetches,501

rendering it “memory-bound”. Conversely, if the arithmetic intensity is high, warps may stall502

due to instruction latency, leading to the kernel being categorized as “compute-bound”.503

The small implicit vertical diffusion and barotropic evolution kernels are relatively simple,504

lacking sufficient arithmetic intensity to effectively mask memory fetch latency. Consequently,505

these small kernels are memory-bound, limited by the bandwidth of global memory fetch. In506

contrast, the large tendency kernels, that utilize a high-order WENO reconstruction, demand507

a significant number of FLOPs per retrieved byte, effectively moving the tendency kernels508

within the “compute-bound” region of the roofline model.509

As a comparison, we showcase the performance of the same kernels but using a simple510

centered second-order advection instead of the WENO scheme. Although the FLOPs/byte511

increase tenfold (or more) with WENO advection, the TFLOPs/s increase only by a factor512

of 2, with a maximum of 2.6 TFLOP/s for the tracer kernels. Therefore, while the use of a513
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Figure 9: Performance metrics for the relevant GPU kernels in the Double Drake configuration
at 1/3� horizontal resolution and 100 vertical levels. The plot shows the speed of the time-
stepping kernels measured in TFLOP/s against the arithmetic intensity, i.e. the number of
operations per byte in the kernel. The data was gathered on a single Titan V GPU using
the Nsight compute profiler (ncu). The large tendency kernels (using a high-order WENO
scheme) are compared to benchmarks that use second-order centered advection.

WENO reconstruction scheme effectively masks memory fetch latency due to its compute-514

intensive nature, the kernels fall short of achieving the Titan V GPU’s theoretical peak515

performance of 6.18 TFLOP/s. We suspect this limitation stems from the exceedingly high516

register pressure of the large tendency kernels (255 registers for the u and v kernels and 180517

registers for the tracers) caused by the WENO advection scheme. This pressure restricts GPU518

occupancy to a mere 11%, eventually leading to the spillover of the register into high-latency519

local memory. This shows that further optimization to alleviate the register pressure caused520

by WENO and permit a larger concurrent execution of parallel warps within a streaming521

multiprocessor could potentially lead to a significant boost in performance (Singh et al.,522

2018).523

5.1 Scaling performance524

The scaling of Oceananigans’ dycore is illustrated in Figure 10 for the quasi-realistic525

ocean setup and in Figure 11 for the Double Drake setup. While figure 10 showcases strong526

scaling of the code, which consists in increasing the resources for a fixed problem size, figure 11527

showcases weak scaling, which involves increasing the resources alongside the problem while528

maintaining a fixed problem size per GPU. The strong scaling (fixed problem size) is tested529

using the quasi-realistic setup. For testing the weak scaling efficiency we opted to utilize the530

Double Drake setup since adapting a quasi-realistic ocean setup to different resolutions is531

more challenging (requiring interpolation of bathymetry, initial conditions, fluxes, etc...).532

Figure 10 shows that the strong scaling of the dycore exhibits nearly ideal behavior533

up to four times the number of GPUs. This suggests that we could exploit the memory534

leanness of Oceananigans (see section 3.1) by sacrificing a portion of the memory to accelerate535

computation by storing intermediate results. The strong scaling efficiency eventually declines536

to about 70% for sixteen times the number of GPUs. It is important to note that this decrease537

in efficiency is not due to an increase in communication, as communication is consistently538

overlapped with computation (see figure 7). Rather, the decline in efficiency stems from539

poor load balancing when scaling the number of workers. Since we employ a sparse compute540

framework, a structured partitioning of the domain results in some GPUs having more active541

cells to compute than others, leading to inadequate load balancing. Effectively addressing542

load balancing within this sparse compute framework is the subject of ongoing development.543

In general, we achieve an approximate speed of about 75 simulated years per wall-clock day544

(SYPD) for a quarter-degree ocean simulation on sixteen A100 GPUs, 10 SYPD for a 1/12�545

ocean simulation on sixty-four GPUs, and over 1 SYPD for a 1/48� ocean simulation on 512546

GPUs.547
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Finally, figure 11 shows the weak scaling capability of Oceananigans’ dynamical core in548

the Double Drake setup, that is, increasing the number of GPUs along with the problem size549

so that each GPU always handles the same degrees of freedom. We have tested 50 million550

and 200 million cells per GPU up to a resolution of 1/168� and 1/84� (with 100 vertical551

levels) on 1 to 192 computational nodes (4 to 768 GPUs). To contextualize the results, the552

stars show the strong scaling of the mesoscale resolving 1/12� resolution quasi-realistic ocean553

setup (the same results shown in the previous figure). Given the efficient masking of halo554

passing and the complete lack of a global communication step, the weak scaling efficiency is555

ideal in all the investigated configurations.556

6 Solutions of the near-global ocean configuration557

This section presents some solutions for the quasi-realistic configuration at 1/12�558

integrated for 20 years. Our goal is to demonstrate that the model can accurately capture the559

basic features of the global ocean circulation, especially the global ocean mesoscale eddy field560

in a high-resolution simulation. These tests are not intended to represent state-of-the-art561
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Figure 12: Snapshots of surface speed for the 1/12� model (bottom left) on January 1st
compared to the AVISO dataset (top left) on the 30th of December. The plots on the right
compare the surface kinetic energy spectra of the modeled solution averaged over the last
ten years of evolution (red lines) and the AVISO data in the same region (grey line).

ocean solutions that would require addressing several deficiencies: too short of an integration562

time for the solution to fully equilibrate, absence of sea ice and an Arctic ocean, simplified563

surface forcing, and basic parameterization for vertical mixing. Our objective is instead564

to demonstrate the model skill in generating a realistic mesoscale eddy field; more metrics565

showing the time-evolution of this configuration are presented in Appendix B.566

The two left panels in figure 12 compare surface velocity field snapshots from the567

simulation and the AVISO (AVISO+, n.d.) satellite-based estimate. The simulation captures568

the location and magnitude of the most energetic currents. A more quantitative comparison569

is offered on the right of panels of the figure which show the surface kinetic energy spectra570

corresponding to the regions highlighted as rectangular boxes in the left panel. The two571

vertical dashed lines bracket the typical mesoscale length-scale range: 10-100 km. The572

diagonal dashed line in the top plot shows the expected k�3 scaling for kinetic energy spectra573

in this range of scales (Charney, 1971) (k being the total horizontal wavenumber) .The574

simulated and AVISO spectra do match very well on the whole range of scales down to575

the wavenumbers where the AVISO spectra drop off rapidly due to the limited satellite576

resolution. At even larger wavenumbers, the simulated spectra continue to follow the k�3
577

scaling building confidence that the mesoscale field is well resolved down to the smallest578

resolved scales.579

While the overall pattern and magnitude of surface velocity compare well between580

simulation and AVISO observations, several differences can be noticed. Both the Gulf Stream581

and the Kuroshio current deviate southward from the latitudes observed in the altimetry.582

The Agulhas rings also show some noteworthy deviations from observations. They do shed583
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Figure 13: Mean eddy kinetic energy from the 1/12� quasi-realistic simulation averaged
over the last 10 years of evolution (left) and from AVISO climatology, averaged over the year
2015 (right)

from South Africa at a frequency comparable to observations and do not all follow a common584

path, as seen frequently in eddy-resolving models (McClean et al., 2011; Ringler et al., 2013).585

But, unlike in observations where the rings dissipate early off the coasts of South Africa,586

in the model, they remain highly energetic and coherent until reaching the coasts of South587

America. Similarly, the simulated rings that shed off the North Brazilian current reach up to588

Gulf of Mexico, interacting with the Loop current. No such energetic eddies can be seen in589

AVISO.590

Figure 13 shows the eddy kinetic energy averaged over the last ten years of evolution591

in the 1/12� model (top) compared to the eddy kinetic energy calculated from the AVISO592

dataset averaged over thirty years (bottom). Values above 1600 cm2 s�2 are saturated.593

The figure confirms that the numerical model captures the geographical distribution and594

magnitude of mesoscale variability, which dominates the eddy kinetic energy, not just in a595

snapshot but also in the time average. The kinetic energy of the mesoscale eddy field in the596

Southern Ocean seems to be particularly well captured by the model. Differences between the597

simulation and observations are consistent with those highlighted in the snapshots of figure 12.598

The model’s propensity to sustain longer-lived coherent structures results in elevated eddy599

kinetic energy along the tracks of the Agulhas rings as well as along the northeastern coast600

of South America, which are significantly less energetic in the observations. The persistence601

of mesoscale features is also responsible for the larger spread of high kinetic energy around602
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Figure 14: Zonally averaged internal structure on January 1st in the first 2500 meters
compared to the EN3 climatological dataset (Ingleby & Huddleston, 2007). The left panels
show the initial condition (contour and solid lines) compared to the EN3 data (dashed lines).
The right panels show the internal structure after 20 years of evolution (solid) lines compared
to the EN3 dataset (dashed lines) superimposed to a contour that illustrates the drift from
the initial conditions to the final state (colored contour). The Mediterranean, Caspian, and
Black Sea were removed from the dataset before zonally averaging.
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the main western boundary currents (Gulf Stream, Kuroshio current, and East Australian603

current) in the simulation than in the satellite observations.604

The tendency of generating spuriously persistent coherent eddies is not unique to605

our model and has been documented in other eddy-resolving, ocean-only models (Ringler606

et al., 2013). It is likely that this bias is due by the lack of eddy damping associated607

with atmosphere-ocean feedbacks. In our simulations, the wind stress is proportional to608

the atmospheric wind velocity only, rather than the difference between atmosphere and609

ocean velocities, which results in a damping of the eddy field (e.g., Ferrari and Wunsch610

(2009)). Indeed preliminary testing using realistic forcing based on bulk formulae and relative611

atmosphere-ocean velocities resulted in simulations with less persistent coherent structures.612

We argued in the introduction that the mesoscale eddy field plays an important role613

in setting the ocean mean state. To illustrate this point, we now compare the ocean mean614

state from the quasi-realistic 1/12� setup, which resolves well the mesoscale eddy field, with615

that simulated with a 1� setup, which does neither resolve nor parameterize the mesoscale616

eddy field. Both simulations are run for 20 years. Figure 14 plots the zonally-averaged617

temperature, salinity, and potential density on January 1st, from both simulations juxtaposed618

to the EN3 (Ingleby & Huddleston, 2007) climatology for January 1996. The EN3 potential619

density is derived from temperature and salinity climatology using the same equation of state620

employed in our dynamical core. The left panels show the initial conditions for the model621

simulations (colored contour and solid lines) compared to EN3 climatology (dashed lines),622

while the right panels compare the solution after twenty years of evolution (solid lines) to623

the EN3 climatology (dashed lines) superposed to the drift between the initial condition and624

the final state (colored contours). The first three rows show the zonal maps of temperature,625

salinity, and potential density for the 1/12� configuration, while the last three show the same626

results for the 1� setup.627

The zonally-averaged profiles of temperature, salinity, and potential density exhibit628

notably less drift in the 1/12� configuration compared to the 1� counterpart at all latitudes629

and depths. This is especially true in the Southern Ocean where mesoscale eddies play a630

key role in maintaining the stratification. while the isopycnals display little drift in the631

1/12� simulation, in the 1� simulation the stratification decreases significantly from initial to632

final state. The impact of the eddies is also evident in the mid-latitude thermoclines which633

become significantly hotter and saltier in the 1� simulation in the absence of the eddies;634

mesoscale eddies are generated through baroclinic instability which acts to increase the ocean635

stratification and resist the pumping of heat and salt into the ocean interior.636

Poleward of 50�N, both the 1/12� and the 1� solution depart significantly from the EN3637

climatology. The discrepancies are already present in the initial conditions but increase over638

the following 20 years. We suspect that these discrepancies stem from two main reasons:639

the absence of a sea ice model and the artificial northern boundary at 75� that ignores the640

exchange of heat and salt with the Arctic. (The latter is less of a problem in the southern641

hemisphere where practically the entire Southern Ocean is represented.) That said, even at642

50�N, the role of the eddies is reflected in shallower isopycnal slopes for the high-resolution643

eddying setup when compared to the 1� configuration.644

7 Summary and conclusions645

We have presented the details of a new GPU-based ocean dynamical core that achieves646

10 SYPD at 8 km-resolution using 64 A100 GPUs, equivalent to 16 computational nodes in647

current state-of-the-art supercomputers such as Perlmutter or Frontier. These resources are648

similar to (or lower than) the typical resource requirements of state-of-the-art CPU-based649

ocean models used in climate projections at much coarser resolutions of, e.g., 25- to 50650

km-resolution, requiring from 10 to 300 computational nodes (Acosta et al., 2024). At these651

coarser resolutions, ocean models have to rely on parameterizing ocean mesoscale turbulence.652

–20–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

We have demonstrated that the computational efficiency of GPUs can be leveraged to develop653

climate models that meet time-to-solution requirements for climate projections that, with a654

lateral spacing below 10 km, do not require mesoscale turbulence parameterizations.655

We also note the excellent multiple-GPU scaling yields 1 SYPD at 2 km resolution656

on 512 GPUs (128 computational nodes on Perlmutter). This paves the way for decadal657

ocean-only simulations at “submesoscale” resolution, of great importance in the modulation658

of air–sea fluxes and biological productivity — see J. Taylor and Thompson (2023) — and659

which is the focus of new satellite platforms (Morrow et al., 2019; Donlon et al., 2012).660

Sub-kilometer global simulations are also possible (albeit with a large number of GPUs) to661

study the impacts of sub-mesoscale small-scale ocean turbulence on the global circulation662

and climate.663

We achieved this step-change performance by coding the algorithm from scratch designed664

specifically for GPUs, including key ocean-model-specific innovations. Both the model665

structure and numerical algorithm take advantage of the many parallel cores provided666

by GPUs, while being mindful of the limited access of GPUs to high-bandwidth memory.667

The algorithm we implemented is independent of the programming language and similar668

performance could likely be achieved using any other language that allows writing GPU669

kernels. Examples include CUDA (both C and Fortran versions), HIP and Kokkos. Progress in670

JIT languages like JAX might also allow achieving similar performance to what we presented671

in the manuscript with the added benefit of obtaining an automatically differentiable model.672

Starting from a clean slate, made it easier to consider every algorithmic choice and achieve673

the remarkable GPU performance reported here. However, we believe it would be possible to674

achieve similar GPU performance by “translating” an existing CPU-based ocean model while675

being mindful of the “recipes” described here. These can be broadly summarized as: (i) adjust676

the thread-block grid to the particular algorithmic choice, (ii) fuse small computations into677

one kernel wherever possible, (iii) ensure that GPU resources do not idle, and (iv) hide678

communication latency behind computation. If a similar strategy is implemented in other679

models, future climate model projections could potentially use 10 km-resolution ocean680

models—perhaps leading to a step-change in the accuracy of climate projections.681

In the work described here, we focused on algorithms that can achieve excellent single682

GPU execution and scaling on multiple GPUs. In particular, we used a finite volume design683

philosophy such as the one of the MITgcm (Marshall et al., 1997). Different discretization684

choices, such as the Arbitrary Lagrangian-Eulerian vertical coordinates (Griffies et al., 2020)685

used to reduce spurious mixing in ocean models, may present greater challenges for efficient686

GPU implementation. Others, like Discontinuous Galerkin methods (Sridhar et al., 2022;687

Souza et al., 2023), have shown to be potentially even more suitable for GPU architectures.688

Finally, one important caveat is that, presently, our ocean model does not include additional689

components such as representations for sea ice and biogeochemistry. These components690

would require additional computation and memory storage, resulting in possible performance691

bottlenecks. While addressing these challenges is a future goal, we believe that the results692

described here make a strong case for pursuing the benefits of ocean modeling on GPUs.693

Appendix A Parameterization for vertical mixing by convective, shear,694

and background small-scale turbulence695

We use a parameterization based on convective adjustment and a stably-stratified696

Richardson number to predict the vertical eddy viscosity ⌫e in (6) and the tracer eddy697

diffusivity e in (10). We first define a “target” eddy diffusivity and eddy viscosity ? and ⌫?,698

? = bg + conv + 0 step (R,R0, R�) , (A1)
⌫? = ⌫bg + ⌫0 step (R,R0, R�) , (A2)
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where bg = 10�5 m2 s�1 and ⌫bg = 10�4 m2 s�1 are constant background mixing coefficients.699

In (A1)–(A2), step (R,R0, R�) is a smooth step function,700

step (R,R0, R�)
def
=

1

2


1 + tanh

✓
hRi �R0

R�

◆�
, where R

def
= max

✓
0,

N2

|@zuh|2

◆
, (A3)

is the Richardson number bounded so that R � 0 and N2 def
= @zb is the vertical derivative of701

buoyancy. The angle brackets hRi denote a center-weighted horizontal filter over nine grid702

points,703

h�i(x, y) def
= 1

4�(x, y) +
1
8�(x��x, y) + 1

8�(x+�x, y)

+ 1
8�(x, y ��y) + 1

8�(x, y +�y)

+ 1
16�(x��x, y ��y) + 1

16�(x��x, y +�y)

+ 1
16�(x+�x, y ��y) + 1

16�(x+�x, y +�y) ,

(A4)

where �x and �y are the horizontal grid spacing in the x and y direction. The horizontal704

filter helps reduce horizontal noise that appears near the equator . The convective diffusivity705

conv in (A1) is defined via706

conv(z)
def
=

8
><

>:

ca if N2(z) < 0

CenJb

s
/N2 if N2(z) > N2

en
but N2 (z +�z) < 0 ,

0 otherwise ,
(A5)

where ca = 1.7m2 s�1 is the convective adjustment diffusivity, N2
en

= 10�10 s�2 is the707

minimum entrainment layer buoyancy gradient, �z is the vertical grid spacing, Jb

s
is the708

surface buoyancy flux, and Cen = 0.1 is the fractional entrainment buoyancy flux compared709

to the surface buoyancy flux. Finally, ? and ⌫? are averaged in time to obtain the eddy710

diffusivity and eddy viscosity, such that at each time-step n,711

n

e
=

n

?
+ Cavn�1

?

1 + Cav

, (A6)

where Cav = 0.6. The time-averaging in (A6), which is equivalent to implicitly relaxing712

the e to the target value h?i over a time-scale Cav �t, where �t is the time-step, helps713

smooth vertical noise associated with the Richardson-number-based components. The 7 free714

parameters — Cav, Cen, 0, ⌫0, R0, R�, ca — are determined by calibration against a set715

of large eddy simulations, using the same methodology as the one described by Wagner et al.716

(2024).717

Appendix B Additional results from the near-global ocean configuration718

In this appendix, we show additional metrics concerning the result of the near-global719

configuration and its evolution from the initial conditions. These metrics are shown to720

characterize the time evolution of the model but are not intended to validate the configuration721

given the known weaknesses of this setup.722

Figure B1 shows the time series of integrated global temperature and salinity and723

integrated global kinetic energy. In the spin-up stage, the model adjusts from the ECCO2724

initial conditions towards the new state imposed by the forcing and the parameter choices.725

The global kinetic energy, shown for the 1/12 degree-configuration, has an initial spin-up726

phase that lasts around 1.5 years and settles around 37 cm2 s�2. Both mean temperature727

and salinity show a drift with a clear annual cycle. The 1 degree-configuration without728

mesoscale eddies shows a drastic temperature drift with the global temperature increasing by729

almost 0.1 �C in 20 years. The global salinity drift is much more contained, with an initial730

decrease in global salinity subsequently offset by an increase that reduces the global drift.731

In the 1/12 degree-configuration, the temperature drift is more effectively contained, while732
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Figure B1: Timeseries of globally averaged temperature (top), salinity (center), and kinetic
energy (bottom). The red dashed line shows the best linear fit.

the salinity shows a monotonic decrease with simulation time. After 20 years of evolution,733

the mean temperature increases by 0.004 �C and the global salinity decreases by about734

0.002 psu. These drifts are relatively small and somewhat comparable to those reported735

by other mesoscale-resolving ocean configurations described in the literature (Iovino et al.,736

2016).737

Figure B2 shows the time series of the Atlantic Meridional Circulation (AMOC) at 26.5�738

North (top) and the transport across the Drake Passage. The transport across the Drake739

Passage compares quite well with observations for both the low and the high-resolution740

configuration. However, the AMOC is mostly determined by the initial conditions evolving741

with a very slow timescale, much slower than the 20 years of evolution simulated in this setup.742

Nevertheless, it is crucial to demonstrate that the model preserves the Atlantic circulation.743

Indeed, the AMOC strength diminishes rapidly in the low-resolution configuration, while it744

maintains greater intensity in the 1/12 degree-configuration.745

This result is confirmed in Figure B3 which presents the structure of the AMOC averaged746

over the last 10 years of integration. The AMOC is significantly stronger for the eddying747

solution. The 1/12� model effectively captures the vertical structure of the AMOC, featuring748

a positive cell extending to approximately four kilometers in depth and maximum transports749

on the order of 18 Sv. This positive cell is complemented by a lower negative cell with750

transports ranging between 2 and 4 Sv. The vertical profiles at 26.5� North are compared to751

the RAPID observations (Johns et al., 2011) on the right of figure B3. The vertical profiles752

of the AMOC are realistic, although the positive cell’s strength is lower than the observed753

values, with the 1/12� setup being closer to observations.754

Open Research Section755

Scripts for reproducing the performance tests and the test cases described in this paper756

are available at Silvestri and Churavy (2024). Visualizations were made using Makie.jl757

(Danisch & Krumbiegel, 2021).758
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Figure B2: Timeseries of the AMOC strength at 25.6�N (top) and the transport across Drake
Passage (bottom). The grey curves show instantaneous 10-day values while the blue and red
lines show a 100-day moving average of the 1 degree- and the 1/12 degree-configurations
respectively. The shaded areas in the time series show the observed estimates from Johns et
al. (2011) (AMOC) and Donohue et al. (2016) (Drake Passage).
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