
Learning dissipation and instability fields from chaotic dynamics

Ludovico T Giorginia,∗, Andre N Souzab, Domenico Lippolisc, Predrag Cvitanovićd, Peter Schmide
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Abstract

To make predictions or design control, information on local sensitivity of initial conditions and state-space contraction is both
central, and often instrumental. However, it is not always simple to reliably determine instability fields or local dissipation rates,
due to computational challenges or ignorance of the governing equations. Here, we construct an alternative route towards that goal,
by estimating the Jacobian of a discrete-time dynamical system locally from the entries of the transition matrix that approximates
the Perron-Frobenius operator for a given state-space partition. Numerical tests on one- and two-dimensional chaotic maps show
promising results.

1. Introduction

The task of reconstructing the governing equations of a dy-
namical system from observed data is a principal challenge
across various fields of theoretical and applied physics. This
endeavor is not only academically significant but also has prac-
tical implications in diverse scientific disciplines, where under-
standing the underlying mechanisms of observed phenomena is
paramount [1]. Even if the dynamical systems under consid-
eration are exceedingly high-dimensional, making an accurate
description of the interactions between all scales and variables
unfeasible, low-order models can often be constructed to re-
tain the most important statistical and dynamical features of the
system, effectively capturing the essential behavior without the
need for exhaustive detail [2, 3, 4, 5]. These simplified models
provide a practical means of reconstructing the core dynamics
and allow for meaningful analysis and prediction, even in com-
plex, high-dimensional contexts [6, 7, 8, 9, 10].

Reduced-order models play a crucial role, for example, in
climate physics by effectively describing interacting degrees of
freedom and capturing key feedback mechanisms across spatial
and temporal scales [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In
finance, reduced-order models are used to understand market
dynamics and to develop robust economic models, such as the
Black-Scholes model [21], a key tool in financial mathemat-
ics. In biology, particularly in the study of ecosystems, disease
propagation, and epidemiology, reduced-order models like the
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Lotka-Volterra equations provide insights into complex interac-
tions, such as predator-prey dynamics [22].

Despite remarkable success, reconstructing low-order mod-
els from observed data becomes particularly challenging in
highly nonlinear and chaotic systems, where the inherent com-
plexity and sensitivity to initial conditions make it difficult to
accurately capture the essential dynamics using simplified mod-
els [23, 24, 25]. Nonetheless, although a precise mathematical
model driving observed data remains elusive, the statistical fea-
tures of the dynamical system can often be robustly estimated
from data, provided a statistically significant amount of obser-
vations is available [26, 27, 28, 29, 30, 31]. A notable example
is given by the Koopman operator approach [32, 33], where the
generally chaotic, nonlinear dynamics of single state-space tra-
jectories is modeled through a linear yet infinite-dimensional
operator that maps observables forward. Its adjoint, the Perron-
Frobenius operator, maps forward probability densities. Rely-
ing on Markovianity, the Perron-Frobenius operator is approxi-
mated by a finite matrix, whose entries may be learned from the
dynamics [34]. Similar approaches have proven effective in the
study of directed networks [35], and brain state and transitions
in computational neuroscience [36].

In this work, we leverage the formal evolution of the Perron-
Frobenius operator, together with the established methods of
approximation of the transport operator with a finite transfer
matrix, in order to extract information on local dissipation and
instability fields over the available state space. That is feasi-
ble through the connection between the transfer matrix and the
Jacobian of the dynamical system under study.

We focus here on discrete-time dynamical systems of form
xn+1 = f (xn), where n ∈ N is the nth discrete time step,
x = {x1, . . . , xD} is a D-dimensional vector representing the
state of the system, and f : RD → RD is the forward map
that characterizes the evolution of the system in time. For
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non-autonomous dynamical systems, we augment the dimen-
sion of the state vector, in order to incorporating external time-
dependent changes.

The key observation is that a density of trajectories at time n,
ρn(x), is transformed by the Perron-Frobenius operator as [37]

ρn+1(x) =
M∑

k=1

ρn( f−1
k (x))

|J( f−1
k (x))|

.

As explained below, in the evolution of a density by the Perron-
Frobenius operator, which is in general a contraction [38], one
can identify the local dissipation with the Jacobian J of the map,
computed on the M preimages f−1

k (x). We shall show that a
lower bound for the local Jacobian J(x) may also be estimated
from the entries of the transfer matrix. In one dimension, J(x)
is the derivative of the map.

Knowledge of dissipation and of instability fields is essential
for analysis, forecast, and control. In particular, potential ap-
plications of our methodology include stabilizing an unstable
system [39], enhancing the sensitivity to initial conditions in
chaotic systems [40], or ensuring that conservation laws are ad-
hered to in physical models [41, 42], when direct evaluation of
the Jacobians is unavailable due to computational challenges, or
ignorance of the governing equations, as in experimental time
series. This knowledge is invaluable not only for understand-
ing of the intrinsic properties of the system, but also in facil-
itating the design of more effective and controlled dynamical
models. This paper aims to demonstrate the utility of this ap-
proach through a detailed theoretical analysis and application to
simulated data, highlighting its potential impact across a broad
spectrum of scientific disciplines.

The article is structured as follows. Section 2 explains how
the Jacobian of the map can be inferred from the transition ma-
trix, in Section 3 we apply this methodology to one- and two-
dimensional chaotic maps, and Section 4 presents our conclu-
sions.

2. From the transition matrix to the Jacobian

The Perron–Frobenius operator P encapsulates how a prob-
ability density function ρn(x) at time step n evolves under the
flow induced by the forward map f ,

ρn+1(x) =
(
Pρn)(x) .

To construct a discrete approximation of this operator, we par-
tition the state space into N equally sized control volumes,

X = [X1, . . . , XN] . (1)

Each control volume has measure

µ(Xi) =
Ω

N
,

where Ω is the total volume of the explored region. We denote
the probability mass in each control volume at time n by

qn
i =

∫
Xi

ρn(x) dx.

Since P acts linearly on ρn, its discretization is a time-
independent transition matrix P ≡ (Pi j) that evolves the disc-
tretized state-space vector {qn

j }
N
j=1 to {qn+1

i }
N
i=1 according to

qn+1
i =

N∑
j=1

Pi j qn
j . (2)

By construction, the transition matrix P satisfies:

N∑
i=1

Pi j = 1 for each j.

Moreover, since Pi j represents the probability of transition from
cluster j to cluster i, it also holds that

0 ≤ Pi j ≤ 1. (3)

When each control volume X j is mapped forward by the un-
derlying flow, the probability mass is reallocated to possibly
multiple volumes Xi. Thus, the entries of P encode the local
stretching or contraction of volumes under the flow map, which
is directly linked to the Jacobian of the forward map f . As we
refine the partition the transition matrix P approaches the action
of the continuous Perron–Frobenius operator, and each transi-
tion Pi j may be interpreted as a (coarse-grained) representation
of volume expansion/contraction governed by the Jacobian. We
present next an explicit derivation of how these matrix elements
relate to the underlying Jacobian structure of the dynamical sys-
tem.

Following Refs. [24, 43], we have

ρn+1(x) =
∫

X
dy δ(x − f (y))ρn(y) =

M∑
k=1

ρn( f−1
k (x))

|J( f−1
k (x))|

,

for each x ∈ Ω, where f−1
k denotes the k ∈ {1, ...,M} preimages

of the forward map f (x), and J is the Jacobian of the trans-
formation. Integrating both sides of the equation in state space
over the cluster Xi yields

qn+1
i =

∫
Xi

ρn+1(x) dx =
∫

Xi

M∑
k=1

ρn( f−1
k (x))

|J( f−1
k (x))|

dx. (4)

Now suppose that the partition X is sufficiently fine, and that
the Jacobian is sufficiently smooth, so that in the integral of
Eq. (4) it can be approximated by its value at the centroid Ci of
Xi. Under these assumptions, we obtain

qn+1
i ≈

M∑
k=1

1∣∣∣J( f−1
k (Ci)

)∣∣∣
∫

Xi

ρn( f−1
k (x)

)
dx

=

M∑
k=1

1∣∣∣J( f−1
k (Ci)

)∣∣∣
N∑

j=1

pk
i j qn

j ,

(5)

where in the second step we have defined

N∑
j=1

pk
i j qn

j :=
∫

Xi

ρn( f−1
k (x)

)
dx .
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The coefficients pk
i j are the elements of a non-negative matrix

representing the Koopman operator (the adjoint of the Perron–
Frobenius operator) of f−1

k

ρn( f−1
k (x)

)
=

∫
X

dy δ(y − f−1
k (x))ρn+1(y) ,

on a discretized state space. The Koopman operator evolves the
probability densities backward in time through the inverse map
f−1
k . Concretely, each pk

i j encodes the probability that the k-th
preimage of the i-th cluster centroid, i.e. f−1

k (Ci), lies in cluster
X j. In addition, the pk

i j obey the normalization conditions and
bounds: ∑N

j=1 pk
i j = 1 for all i, k, (6)

0 ≤ pk
i j ≤ 1 for all i, j, k. (7)

Rewriting Eq. (5) as

qn+1
i ≈

M∑
k=1

1
|J( f−1

k (Ci))|

N∑
j=1

pk
i jq

n
j

=

N∑
j=1

 M∑
k=1

1
|J( f−1

k (Ci))|
pk

i j

 qn
j =

N∑
j=1

Pi jqn
j

we obtain the relation between the deterministic forward map f
and the transition matrix of Eq. (2)

Pi j =

M∑
k=1

1
|J( f−1

k (Ci))|
pk

i j .

If M = 1 for all i, pi j coincides with the transpose of the adjoint
of the transition matrix. In this case the Jacobian can be esti-
mated directly from the transition matrix. For k > 1 we define

Ai =

N∑
j=1

Pi j =

M∑
k=1

1
|J( f−1

k (Ci))|

N∑
j=1

pk
i j =

M∑
k=1

1
|J( f−1

k (Ci))|
, (8)

where we used Eq. (6).
Let k∗(i, j) be the index of the largest entry of pk

i j for given
i, j. We can then write:

B j = max
i

Pi j = max
i

M∑
k=1

1
|J( f−1

k (Ci))|
pk

i j

≈ max
i

M∑
k=1

1
|J(C j)|

pk
i j ≈

1
|J(C j)|

max
i

pk∗(i, j)
i j ≤

1
|J(C j)|

,

where we approximated with C j all the preimages of Ci falling
in X j and we used Eq. (7). Furthermore, since B j is bounded
by probability bound Eq. (3), we have that

B j = max
i

Pi j ≤ min{|J(C j)|−1, 1} . (9)

For an alternative derivation of the expressions for Ai and B j,
see the Appendix.

The Perron–Frobenius operator P is often characterized as a
contraction, satisfying ∥Pρ∥ ≤ ∥ρ∥. Thus, Ai defined in Eq. (8)

can be viewed as the local inverse dissipation rate of the state-
space volume centered at Ci. In one dimension B j defined in
Eq. (9) is an upper bound on the derivative of the forward map.

An addition of noise to each x does not alter Ai (Eq. 8) be-
cause each pk

i j remains normalized. However, noise increases
the variance of pk

i j, thereby reducing its maximal values. In re-
gions where f−1 contracts the state space, pk

i j ≈ 1 are weakly
affected if the noise remains small compared to the control vol-
umes. Consequently, certain entries B j (Eq. 9) will stay close
to 1/|J(C j)|, allowing for the extraction of the Jacobian.

The expressions for Ai and B j are based on the discretetiza-
tion of matrices Pi j. Although we shall rely on explicit formulas
for the Jacobian and the pre-image maps f−1

k in our examples,
we emphasize that the discrete transfer operator may be inferred
purely from data, without requiring prior knowledge of the gov-
erning equations.

3. Jacobian of chaotic maps

In this section, we apply the method described above to a va-
riety of one-dimensional and two-dimensional dynamical sys-
tems. Our primary objective is to relate the entries of the nu-
merically estimated transfer operator to the Jacobian of the un-
derlying system.

3.1. One-dimensional chaotic maps
For detailed discussions of the dynamical systems that fol-

low, the reader is referred to Chapter 17 of [43].

3.1.1. The Ulam Map
The mapping

xn+1 = 1 − 2(xn)2,

on the interval xn ∈ (−1, 1] for all n is known as ‘Ulam map’.
The Perron-Frobenius evolution equation for the probability
density is

ρn+1(Ci) =
1
4

(
2

1 −Ci

) 1
2
ρn

(1 −Ci

2

) 1
2
 + ρn

− (
1 −Ci

2

) 1
2

 ,

and, subsequently,

∑
k

1
|J( f −1

k (Ci))|
=

√
2

2

(
1

1 −Ci

) 1
2

, (10)

with
1

|J(C j)|
=

1
4|C j|

. (11)

3.1.2. Continued Fraction Map
In the case of the continued fraction map, given by

f (x) =
1
x
−

⌊
1
x

⌋
, xn ∈ [0, 1] ∀n ,

we have

ρn+1(Ci) =
∞∑

k=1

1
(k +Ci)2 ρ

n
(

1
Ci + k

)
,
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∑
k

1
|J( f −1

k (Ci))|
= Ψ(1 +Ci), (12)

and
1

|J(C j)|
= C2

j , (13)

where Ψ(x) = Γ′(x)
Γ(x) is the polygamma function (logarithmic

derivative of the Gamma function), and ⌊x⌋ denotes the integer
part of x.

3.1.3. Cusp Map
The map

f (x) = 1 − 2|x|
1
2 , xn ∈ [−1, 1] ∀n

is known as the ‘cusp map’, with the Perron-Frobenius evolu-
tion equation for the probability density

ρn+1(Ci) =
1 −Ci

2

[
ρn

(
(1 −Ci)2

4

)
+ ρn

(
−

(1 −Ci)2

2

)]
,

∑
k

1
|J( f −1

k (Ci))|
= 1 +Ci, (14)

and
1

|J(C j)|
=

√
|C j|. (15)

3.1.4. One-dimensional Chebyshev map
The one-dimensional Chebyshev map is defined as:

xn+1 = TN(xn) , x ∈ [−1, 1] , (16)

where TN(x) is the N-th Chebyshev polynomial TN(x) =
cos(N arccos(x)) . The Perron-Frobenius evolution equation for
this map is

N−1∑
k=0

1
|J( f −1

k (Ci))|
=

N−1∑
k=0

√
1 − x2

k(Ci)

N |sin(N arccos(xk(Ci)))|
, (17)

and

1
|J(C j)|

=

√
1 −C2

j

N
∣∣∣sin(N arccos(C j))

∣∣∣ , (18)

where

xk(Ci) = cos
(

arccos(Ci) + 2πk
N

)
, k = 0, 1, . . . ,N − 1 .

3.1.5. Results
We partition the state space into N = 100 equally sized con-

trol volumes, and assign every orbit point to its corresponding
volume. Using this cluster of trajectories, we construct the tran-
sition matrix P, from which we extract our estimates for the
inverse dissipation Ai =

∑N
j=1 Pi j and the local instability rate

B j = maxiPi j from the data collected by running the dynam-
ics. We also repeat the procedure with additive Gaussian white
noise of amplitude σ.

In Figs. (1, 2) we compare the expressions Ai and B j ob-
tained from the transition matrix with their analytical values,
as defined in Eqs. (10) to (17). In the panels representing B j

we set to unity all values of the analytical estimate of B j larger
than one, since the elements of B j obtained from the transition
matrix cannot be larger than unity.

Upon varying the noise amplitudes in Fig. (1), we observe
a consistent pattern: the ‘data’ estimate of Ai accurately repro-
duces its expected value, without appreciable deviations, up to
the precision of our numerics, with or without additive noise.
On the other hand, the data estimate of B j is less accurate, as
well as more sensitive to noise. In particular, the local instabil-
ity rate is often underestimated as the noise amplitude increases.
However, the quality of the estimates of B j does follow a pattern
that depends on the instability itself: it is in fact noted from the
plots that the estimate for the instability rate B j is consistently
the more accurate and noise-robust, the larger the Jacobian, or
equivalently, the smaller B j.

3.2. Two-Dimensional Coupled Chebyshev Maps
This section demonstrates the application of the proposed

methodology to estimate the Jacobian for two-dimensional cou-
pled Chebyshev maps [44]. We will compute coefficients Ai

and B j for small coupling strengths and polynomial orders
N = 2, 3, 4.

The two-dimensional coupled Chebyshev map is defined by:

xn+1 = (1 − a) TN(xn) + a TN(yn),
yn+1 = (1 − a) TN(yn) + a TN(xn),

(19)

where TN(·) is the N-th Chebyshev polynomial, and the param-
eter a ∈ [0, 1] controls the coupling strength. For the particular
cases N = 2, 3, 4, the polynomials are

• T2(x) = 2x2 − 1,

• T3(x) = 4x3 − 3x,

• T4(x) = 8x4 − 8x2 + 1.

Coupled Chebyshev maps with a relatively weak coupling (here
the parameter a is set to 0.01 throughout the simulations pre-
sented) are ergodic and mixing like their uncoupled counter-
parts, yet they exhibit multidimensional features (e.g. their nat-
ural measure), whereas they tend to develop coherent structures
and synchronization for stronger couplings [45]. Moreover, still
in the regime of weak coupling, the dynamics is locally expand-
ing (both eigendirections are unstable), rather than hyperbolic
(only one is unstable) [44], which yields non-trivial dissipation
and instability fields in the state space. For that reason in par-
ticular, the local Jacobian is still a measure of instability, and so
is our observable B j.

The Jacobian of the forward map in Eq. (19) is:

|J(x, y)| =
∣∣∣∣(1 − a)2 T ′N(x) T ′N(y) − a2 T ′N(y) T ′N(x)

∣∣∣∣,
where

T ′N(x) =
−N sin

(
N arccos(x)

)
√

1 − x2
.
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Figure 1: Ulam, continued fraction and cusp maps: Plots of Ai and B j (left and right column, respectively) derived from the transition matrix (depicted with red
lines), along with their analytical estimates (shown in blue), for the Ulam, continued fraction, and cusp maps. Noise amplitudes of σ = 0, 0.001, 0.002, 0.003 have
been applied to the maps.

Although the inverse of the two-dimensional map does not ad-
mit a closed-form solution for arbitrary N, it can be determined
analytically for N = 2:

xn = ±

√
−1 − xn+1 + a (2 + xn+1 + yn+1)

−2 + 4a
,

yn = ±

√
−1 − yn+1 + a (2 + xn+1 + yn+1)

−2 + 4a
,

and N = 4:

xn = ±
1
2

√
2 ±

√
−2 (1 + xn+1) + 2a (2 + xn+1 + yn+1)

−1 + 2a
,

yn = ±
1
2

√
2 −

√
−2 (1 + yn+1) + 2a (2 + xn+1 + yn+1)

−1 + 2a
.

For T3, the inverse map is given by the solution to the cubic
equations:

(xn)3 − 3
4 xn +

a
4(1−2a) yn+1 +

a−1
4(1−2a) xn+1 = 0,

(yn)3 − 3
4 yn +

a
4(1−2a) xn+1 +

a−1
4(1−2a) yn+1 = 0.

We simulate the Chebyshev map over 107 time steps for
N = 2, 3, 4, partitioning the state space into a 100 × 100 grid
of equally size control volumes to construct the transition ma-
trix. Figs. (3, 4) present the results for N = 2, 3, 4, comparing
the numerical estimates of Ai, B j with their analytical counter-
parts. Similar observations to those made in previous examples
apply here. Specifically, we observe that Ai closely matches
its analytical expectation across the state space. In contrast,

the observable B j computed from data is accurate primarily in
the more unstable regions of the state space, while it provides
poorer estimates of the inverse of the Jacobian in the dynami-
cally less unstable or nearly marginal regions.

4. Conclusions

In this study we have developed and validated a novel
methodology that connects the dissipation and instability fields
to the transition matrix of a dynamical system, constructed by
partitioning state space into a finite set of control volumes. The
task is made possible by inferring constraints on the Jacobian
from the statistical features of the dynamical system, which can
be easily obtained from observables without any a priori as-
sumptions on the governing equations. Knowledge of the Jaco-
bian is pivotal in deriving pertinent information about the dy-
namical features of the system, and it paves the way for the
development of accurate prediction or control tools.

The numerical simulations of both one-dimensional and two-
dimensional chaotic maps demonstrate the robustness of our
methodology – but also highlight specific challenges. In partic-
ular, in the two-dimensional case, we observe that state-space
regions, where the local Jacobian is accurately reproduced by
the data-determined observable B, are bounded.

One potential approach we aim to explore in the future in-
volves synthesizing the less accurate information from the esti-
mate B for the local Jacobian, with the more precise data from
the observable A for the dissipation. This strategy would in-
volve initially using B to aid in the estimation of the determin-
istic flow/map f . Subsequently, the inverse function f−1 could
be calculated, allowing us to verify the accuracy of our esti-

5



Figure 2: One-dimensional Chebyshev map: Plots of Ai and B j derived from the transition matrix (red lines), along with their analytical estimates (blue lines), for
the Chebyshev map defined in Eq. (16) with N = 2, 3, 4, and 5, and σ = 0.

mation. This verification would be accomplished by using f−1

to estimate the dissipation A, followed by a matching of this
result to A, this time as derived from the transition matrix via
Eq. (8). This hybridized approach may help overcome the lim-
itations associated with using the observable B alone for the
reconstruction of the Jacobian.

Another challenge can arise from errors in determining the
entries of the transition matrix corresponding to regions of co-
ordinate space that are rarely visited by the dynamical system,
a common occurrence when only a limited amount of data is
available. This introduces noise into both observables A and B.
The resulting effects are more pronounced in B, since each entry
corresponds directly to an individual entry from the transition
matrix, unlike A, where each entry is a sum of all the elements
in each column, effectively averaging out the noise introduced
by the finite amount of processed data.

In summary, the methodology developed in this study pro-
vides a new pathway to connect statistical features of dynam-
ical systems, specifically the transition matrix, with the local
dynamics captured by the Jacobian. While our approach shows
promise in effectively reconstructing the Jacobian from ob-
served data, it also highlights challenges, particularly in higher-
dimensional systems where the relationship between the tran-
sition matrix and the Jacobian becomes less straightforward.
Future research will focus on refining the approach by combin-
ing the insights from both observables A and B to improve the
accuracy and reliability of the Jacobian reconstruction. Addi-
tionally, expanding this methodology to handle more complex
dynamical systems and exploring the effects of noise and other
perturbations will be crucial for broadening the applicability of
this approach and for demonstrating its potential.
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Appendix: Alternative derivation of the expressions for Ai
and B j

Let us write a density in the state space as a sum of contribu-
tions over the discretization Eq. (1), X = [X1, . . . , XN],

ρn(x) =
∑

j

αn
jρ j(x) , (20)
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where the ρ j’s are smooth functions peaked at the centroid C j

of each interval, for example the Gaussians

ρ j(x) =
1

(2πσ2)D/2 exp
(
−
∥x − C j∥

2

2σ2

)
.

We set σ2 = [Ω/N]2/D/2π to ensure that the support of ρ j ap-
proximately coincides with X j, thereby rendering the Gaussian
basis nearly orthogonal. Consequently, we can write:

qn
i =

∫
Xi

ρn(x) dx ≈ αn
i .

The evolution of the probability of each interval reads

qn+1
i =

∫
Xi

ρn+1(x)dx =
∫

Xi

dx
∫

X
dy δ(x − f (y))ρn(y)

where the Perron-Frobenius operator
∫

X dy δ(x − f (y))· trans-
ports state-space densities forward in time. Using the parti-
tion (20), the previous is rewritten as

qn+1
i =

N∑
j=1

αn
j

∫
Xi

dx
∫

X
dyδ(x − f (y))ρ j(x) (21)

≈

N∑
j=1

qn
j

∫
Xi

dx
∫

X j

dyδ(x − f (y))ρ j(x)

=

N∑
j=1

qn
j

M∑
k=1

∫
Xi

dx
ρ j( f−1

k (x))

|J( f−1
k (x))|

.

Now suppose that the partition X is sufficiently fine for the
integrals to be well approximated by the value of the integrand
at the centroid Ci of Xi times the measure of the interval. Re-
calling that the ρ j’s are Gaussians, we write

qn+1
i ≃

N∑
j=1

qn
j

M∑
k=1

e−∥ f
−1
k (Ci)−C j∥

2/2σ2

|J( f−1
k (Ci))|

, (22)

having chosen σ2 = [µ(Xi)]2/D/2π for the normalization to be
unity. One can then approximately identify the entries of the
transition matrix with

Pi j ≃

M∑
k=1

e−∥ f
−1
k (Ci)−C j∥

2/2σ2

|J( f−1
k (Ci))|

.

The probabilities Pi j to go from X j to Xi in one iteration of the
transfer operator are constrained by the condition∑

Pi j = 1 ,

so that
N∑

i=1

M∑
k=1

e−∥ f
−1
k (Ci)−C j∥

2/2σ2

|J( f−1
k (Ci))|

≃ 1 ,

and, as every single i−th contribution is positive definite, we
have

M∑
k=1

e−∥ f
−1
k (Ci)−C j∥

2/2σ2

|J( f−1
k (Ci))|

≲1 .

The largest entries of the transfer matrix are realized when X j

maps into Xi, that is for a special k∗ such that ∥ f−1
k∗ (Ci)−C j∥

2 <
σ2, and so we have rederived Eq. (9),

B j ≡ max
i

Pi j ≃
1

|J( f−1
k∗ (Ci))|

≈
1

|J(C j)|
. (23)

All the previous expressions from (22) up to (23) rely on the
assumption of non-vanishing Jacobians |J( f−1

k∗ (Ci))| and |J(C j)|.
If, instead, the Jacobian does vanish somewhere in the intervals
Xi or X j, the approximation (22) no longer holds, and∫

Xi

dx
ρn

j ( f−1
k (x))

|J( f−1
k (x))|

=

∫
f−1
k (Xi)

dy ρn
j (y)

=

∫
f−1
k (Xi)

dy
(2πσ2)D/2 e−∥y−C j∥

2/2σ2
≤ 1

now provides an upper bound for maxi Pi j. On the other hand,
the sum of the probabilities of landing in Xi is, confirming
Eq. (8),

Ai ≡
∑

j

Pi j ≃

N∑
j=1

M∑
k=1

e−∥ f
−1
k (Ci)−C j∥

2/2σ2

|J( f−1
k (Ci))|

≈

M∑
k=1

1
|J( f−1

k (Ci))|
,

estimating that the only non-negligible contributions to the sum
over j are coming from the C j’s such that || f−1

k (Ci) − C j|| < σ
2.
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