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Abstract

Leveraging recent work on data-driven methods for constructing a finite state
space Markov process from dynamical systems, we address two problems for
obtaining further reduced statistical representations. The first problem is
to extract the most salient reduced-order dynamics for a given timescale
by using a modified clustering algorithm from network theory. The second
problem is to provide an alternative construction for the infinitesimal gener-
ator of a Markov process that respects statistical features over a large range
of timescales. We demonstrate the methodology on three low-dimensional
dynamical systems with stochastic and chaotic dynamics. We then apply
the method to two high-dimensional dynamical systems, the Kuramoto-
Sivashinky equations and data sampled from fluid-flow experiments via Par-
ticle-Image Velocimetry. We show that the methodology presented herein
provides a robust reduced-order statistical representation of the underlying
system.
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1. Introduction

Dynamical systems are ubiquitous in many scientific fields, ranging from
physics and engineering to biology and finance [1, 2, 3, 4]. The behavior of
these systems is critical to our understanding of the world around us and
our ability to forecast future events [1, 3, 5, 6, 7]. One of the key challenges
in studying dynamical systems is the detection of patterns, the reduction of
their dimensionality, and the extraction of coherent structures that govern

Preprint submitted to Nuclear Physics B May 14, 2024

ar
X

iv
:2

30
8.

10
86

4v
2 

 [
nl

in
.C

D
] 

 1
3 

M
ay

 2
02

4



their intrinsic behavior [4, 2, 8, 9, 10, 11, 12]. In this effort, clustering algo-
rithms are commonly used as tools for identifying and categorizing patterns
in data. In recent years, the application of clustering algorithms to dynami-
cal systems has gained significant attention, as they provide a powerful way
of studying the behavior of general systems and extracting meaningful in-
sights into their structure [13, 14, 15, 16]. Moreover, when applied to time
series data, they serve as partitions of state space, allowing for statistical
reduced-order models of the underlying dynamics [17].

This work addresses two separate issues:

1. The construction of a minimal partition of state-space on a given time-
scale.

2. The construction of an infinitesimal generator that respects transition
probabilities over a large range of timescales.

By providing solutions to the above issues we can then construct a reduced-
order statistical model of the underlying dynamical system.

The first problem is addressed through a modification of the Leicht-
Newman algorithm [18], which generalizes the algorithm from directed graphs
to Perron-Frobenius operators. The original Leicht-Newman algorithm is
based on modularity maximization which has a number of known problems,
see [19, 20, 21, 22]. However, we find that our modified modularity criteria,
along with the application of the methodology to “networks” arising from
dynamical systems, yield results which garner insight to the original system.
The new modularity criterion gives an automated way of determining a stop-
ping criteria when performing spectral bisection as in [23], yielding a “hands
off” approach towards finding a reduced order system.

The second problem is addressed by using a perturbative approach to the
construction of the generator. In essence, we use a preliminary algorithm to
obtain an approximate generator, see [12]. Then, using the Koopman eigen-
functions of this preliminary generator, we correct the eigenvalues of the
preliminary generator by using the temporal autocorrelations of the Koop-
man eigenvectors. The new generator retains the eigenvectors of the original
operator while using the modified eigenvalues.

The paper is divided into five subsequent sections. Section 2 reviews
the mathematical setting for this study. Following this, Sections 3 and 4
introduce the main algorithms: a modified Leicht-Newman algorithm and a
perturbative construction of the infinitesimal generator, respectively. Section
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5 summarizes the overall methodology. And finally, in Section 6, we apply
the methodology to a range of dynamical systems.

2. Mathematical background

We consider the temporal evolution of an autonomous continuous-time
dynamical system of the general form

ẋ(t) = F (x(t)), (1)

where x : [0, T ] → RD, T > 0 represents the D-dimensional state of the
system and F : RD → RD denotes a deterministic D-dimensional flow. Ex-
tending the formulation to non-autonomous dynamical systems can be ac-
complished in a straightforward way by augmenting the dimension of the
state vector. Furthermore, the formulation can take into account multi-
scale characteristics by rescaling each state-vector component according to
a time-scale τi on which the respective dynamics are realized, i.e., we take
xi(t/τi) → yi(t) ∀i ∈ [1, D].

In many cases, the number of snapshots of the dynamical system and the
degrees of freedom of its dynamics makes it impractical, or even infeasible,
to study its behavior directly in the high-dimensional state space. Instead, a
coarse-grained model is sought that preserves the statistical and dynamical
features of the original full-scale system, and is more amenable to analytical
tools.

This coarse-grained model is constructed by defining a distance d between
the temporal snapshots, then utilizing this measure to cluster the snapshots
into aggregates of similar states [14]. In other words, snapshots close in
state space are gathered into the same cluster, and the original time series
is reduced to a low-dimensional analog for the inter-cluster dynamics. The
choice of distance measure and the number of clusters N is generally not
defined a priori and may crucially depend on the details of the system under
investigation and on the physical quantities of interest.

Any dimensionality reduction introduces a stochastic component into our
coarse-grained system that accounts for the inevitable information loss of
the precise trajectory followed by the system in state space. Consequently, a
probabilistic formalism to study the dynamics of the coarse-grained system
is prudent and essential. More specifically, the temporal evolution of our
coarse-grained system will be described by the following Markov process
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Xn+1 = S(Xn) = s(Xn) +W (Xn), (2)

where X : [0, T ] → RNm
, T > 0 describes the state of the system, considering

a m-dimensional delay embedding. The force fields s : RNm → RNm
and

W : RNm → RNm
represent the deterministic and stochastic components,

respectively. The amplitude of the stochastic force field W can be reduced
by increasing the values of N and m. For our subsequent analysis, we will
consider m = 1; a generalization of our results to arbitrary values of m is
straightforward.

The forward evolution of the probability distribution function (PDF) ρ
of the coarse-grained state Xn follows a Fokker-Planck equation according to

∂tρ = LFPρ (3)

with LFP as the Fokker-Planck operator. Its discrete counterpart can be
stated as

ρt+∆t = P∆tρt, (4)

where P∆t denotes the Perron-Frobenius operator or the transition matrix
for a time step ∆t.

We start by partitioning the state space by using k-means clustering
of the snapshots of the system according to their Euclidean state-space
distance. This preliminary partitioning acts as a starting point for con-
structing strongly intra-connected regions. These communities of strongly
intra-connected elements are referred to as almost-invariant sets in the per-
tinent literature [24]. A partitioning of state space into almost-invariant sets
{Ân

1 , Â
n
2 , . . . , Â

n
k} satisfies

Rn(Â
n
1 , Â

n
2 , . . . , Â

n
k) = sup{Rn(A1, A2, . . . , Ak)}, (5)

with {A1, A2, . . . , Ak} as a measurable partition of X and Rn defined as

Rn(A1, A2, . . . , Ak) =
1

k

k∑
l=1

m(Al ∩ S−n(Al))

m(Al)
, (6)

where m(B) denotes a Lebesgue measure of B, and n represents the number
of time steps considered in the definition of the almost-invariant set. The
operator S−n stands for the backstep operator over n timesteps.
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3. AModified Leicht-Newman Algorithm for Perron-Frobenius Op-
erators

In what follows, we propose a modification of the directional Leicht-
Newman algorithm [18], which, in its original form, consists of a recursive
division of a network of size N into two disjoint communities. Each network
vertex i is labeled by si ∈ {−1, 1} depending on which community it has
been assigned to, and the values of si are chosen to minimize the modularity
parameter M defined as

M =
1

2N

∑
ij

si(Bij +Bji)sj, (7)

with Bij as the modularity matrix given as

Bij =
1

N

(
Aij −

kini k
out
j

N

)
. (8)

In the latter expression, A stands for the graph adjacency matrix, and
kini , k

out
j represent the in- and out-degrees of each vertex, respectively.

Following [25], the label vector s can be written as a linear combination
of the eigenvectors vi of B + BT , i.e., s =

∑
i aivi, with ai = vTi s. The

modularity parameter then becomes

M =
∑
i

aiv
T
i (B +BT )

∑
j

ajvj =
∑
i

βi(v
T
i s)

2, (9)

with βi as the i
th largest eigenvalue. M is maximized by taking s maximally

collinear to the principal eigenfunction v1 (corresponding to the largest eigen-
value), with the constraint si ∈ {−1, 1}. This latter constraint is satisfied by
choosing si = sign (v1,i).

In an effort to progressively divide the network into further communi-
ties, we continue to maximize the modularity parameter after replacing the
original modularity matrix with the generalized modularity matrix

Bg
ij = Bij − δij

∑
k∈g

Bik, (10)

with indices i, j ranging over the elements of the subgraph g that we wish to
further decompose into two sub-communities.
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3.1. The Modification

In our case, we consider a network with N vertices of out-degree m (the
in-degree is not specified). Each vertex represents a transition probability of
1/m. We can write

Bt
ij =

1

mN

(
(#ij)

t −
(#out

i )t(#in
j )t

mN

)
=

1

N

(
(#ij)

t

m
− 1

N

(#out
i )t

m

(#in
j )t

m

)
,

(11)

with (#ij)
t denoting the number of edges pointing from cluster i to cluster

j at time t, and (#in
i )t ((#out

i )t) stands for the number of edges pointing
towards (away from) the ith vertex. This calculation motivates the definition

Bt
ij = P t

ij −
1− P t

ii

N

(∑
k

P t
kj

)
. (12)

We then have to minimize the modularity parameter M, using the mod-
ularity matrix defined above, until it falls below a user-supplied threshold
Mmin. By increasing this threshold, we influence the intra-connectivity of
the almost-invariant sets that the algorithm determines.

Before proceeding, we notice that the expression for the modularity ma-
trix can be simplified for large values of N and t according to

Bt
ij = P t

ij −
1− P t

ii

N

(∑
k

P t
kj

)

= P t
ij −

1

N

(∑
k ̸=i

P t
ik

)(∑
k

P t
kj

)
≃ P t

ij − P∞
ij ,

(13)

where in the last step we used the fact that the sum of the rows or columns
of the transition matrix converges faster to its asymptotic values than the
single matrix elements.

4. A Perturbative Construction of the Generator

We can then state the explicit dependence of the Perron-Frobenius oper-
ator on the time variable. In the limit of ∆t→ 0, Eq. (4) becomes
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lim
∆t→0

ρt+∆t = (I +Q∆t)ρt, (14)

and, taking the continuous limit, we arrive at

ρ̇ = Qρ, (15)

that is, a forward evolution equation for ρ – discrete in space and continuous
in time – which can be formally solved to read

ρt = eQ(t−s)ρs = P t−sρs, (16)

with t > s.
The matrix Q is constructed from the coarse-grained data by noticing

that, under the assumption of the Markov property for our system, the res-
idence times in each cluster are independent and exponentially distributed
with rates ri = 1/τi ∀i ∈ [1, N ] with τi representing the mean residence time
in cluster i. Therefore, we can write [26]

lim
∆t→0

1− P∆t
ii

∆t
= lim

∆t→0

Pr(τi < ∆t)

∆t
= ri = −Qii,

lim
∆t→0

P∆t
ij

∆t
= lim

∆t→0

1− P∆t
ii

∆t

P∆t
ij∑

j ̸=i P
∆t
ij

= ri
P∆t
ij∑

j ̸=i P
∆t
ij

= Qij.

(17)

The fact that we constructed the matrix Q using the statistics of the sys-
tem at infinitesimal time scales, often introduces errors that become promi-
nent when considering the statistical properties of the system at larger time
scales. This is especially the case when the number of clusters is small. In
what follows, we propose a method to overcome this issue by correcting the
values of Q using information about the system’s behavior on larger time
scales. These corrective terms are based on a matrix perturbation approach.

4.1. The Perturbation Correction to the Generator

Let us assume that the matrix Qpert approximates the matrix Q that
we constructed above, which means that we obtain Qpert from an additive
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perturbation to Q. We write Qpert − Q = δQ = gQ′ with Q′
ij = O(1) and

g ≪ 1. The eigenvalue problem for Qpert can be stated according to

(Q+ gQ′)(ϕi
0 + gϕi

1) = (λi0 + gλi1)(ϕ
i
0 + gϕi

1), (18)

which yields, considering only linear O(g) terms,

Q′ϕi
0 +Qϕi

1 = λi0ϕ
i
1 + λi1ϕ

i
0. (19)

Multiplying on the left by the transpose of the unperturbed left eigenfunction
of Q, denoted by (ψi

0)
T , we obtain

Q′ϕi
0 = λi1ϕ

i
0, (20)

where we have used the fact that the unperturbed left eigenfunctions of Q are
bi-orthogonal to the unperturbed right eigenfunctions. Consequently, since
the unperturbed right eigenfunction can be expressed as a linear combination
of the unperturbed right eigenfunctions, the second term on the left-hand
side of Eq. (19) cancels the first term on the right-hand side after left-
multiplication by (ψi

0)
T . We hence recast the perturbation δQ as a function

of the unperturbed eigenfunctions and eigenvalues of Q according to

δQ =
∑
i

δλiϕi
0(ψ

i
0)

T , (21)

with δλi = gλi1.
In order to obtain δλi we construct a N -dimensional time series from the

coarse-grained system by associating with each value Xn a N -dimensional
vector containing, in each element, the Xn-th value of the unperturbed left
eigenfunction of Q. In other words, we perform the map Xn → ψi

Xn
= Y i

n ∀i,
where we omitted the subscript 0 for ψi.

The correlation function for Ỹ i = Y i − ⟨Y i⟩ then becomes

CỸ i(t) =
(ψi)Tdiag(ϕ1)[(ψ

i)T (P t − diag(ϕ1))]
T

(ψi)Tdiag(ϕ1)ψi

=
(ψi)Tdiag(ϕ1)

[
(ψi)T

(∑
k ̸=1 e

(λk
0+gλk

1)tϕk(ψk)T
)]T

(ψi)Tdiag(ϕ1)ψi

=
e(λ

i
0+gλi

1)t(ψi)Tdiag(ϕ1)ψ
i

(ψi)Tdiag(ϕ1)ψi
= e(λ

i
0+gλi

1)t.

(22)
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We determine this correlation function from data for each value of i and
obtain λi0 + gλi1 from a least-squares fit. After computing the difference be-
tween each exponent and the unperturbed eigenvalue λi0, we then estimate
the eigenvalue deviation δλi and subsequently the corrective matrix pertur-
bation δQ.

The correlation function of the coarse-grained time series X̃ = X − ⟨X⟩
becomes

CC(t) =
CTdiag(ϕ1)

[
CT
(∑

k ̸=1 e
λktϕk(ψk)T

)]T
CTdiag(ϕ1)C

, (23)

where C is a vector containing the centers of the clusters, and λk represents
the k-th eigenvalue of Qtrue.

Succinctly, the proposed modification to Q is to retain the eigenvectors
of Q but modify the eigenvalues by performing an exponential fit to the
autocorrelation of the Koopman modes. We will demonstrate in Section 6 a
marked improvement in using Qpert to construct the transition matrix with
respect to Q.

4.2. Connecting the Generator to Modularity Maximimization

Writing the Perron-Frobenius operator as a function of the eigenvalues
and eigenfunctions of the transition rate matrix Q and using the approxi-
mation in Eq. (13), we restate the modularity matrix and the generalized
modularity matrix as

Bt
ij ≃

∑
k ̸=1

eλktϕk
iψ

k
j , (24)

(Bt
ij)

g ≃
∑
k ̸=1

eλkt

[
ϕk
iψ

k
j − δij

∑
h∈g

ϕk
iψ

k
h

]
, (25)

with i, j ∈ g.
We notice from Eqs. (24, 25) that all eigenvalues of the modularity and

generalized modularity matrix exponentially tend to zero in the limit t →
∞ and, consequently, the division of phase space into almost-invariant sets
becomes impracticable. No almost-invariant sets are found for large values
of time since the elements of the transition matrix approach the equilibrium
probability distribution function and

lim
n→∞

m(A ∩ S−n(A))

m(A)
= 1. (26)
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As a consequence, Eq. (6) will cease to depend on the choice of {A1, A2, . . . , Ak}
and a partition of the state space into almost-invariant sets is no longer de-
fined.

5. Methodology

In summary, we have presented two different algorithms. One algorithm
determines almost-invariant sets in state space for a given time scale starting
from an initial clusterization which ignores details of the system under study,
see Section 3. The other algorithm, in contrast, constructs the transition
rate matrix, i.e., the transition matrix’s generator, which accurately recovers
the latter for any time step, see 4. The two algorithms can be combined:
determining almost-invariant sets based on the former algorithm, then using
these sets in the latter to construct the transition rate matrix.

We thus propose a four-step approach to cluster time series of a multi-
dimensional dynamical system:

1. We apply a k-means algorithm to precluster the time series with a user-
specified value of k, the number of clusters. This step ensures that we
capture the coarse-grained system dynamics and, at the same time,
that each cluster contains a sufficient number of data points.

2. We next employ the modified Leicht-Newman algorithm to identify
the almost-invariant sets of the dynamical system associated with its
first n dominant time scales. These time scales are determined by the
inverse of the first n largest eigenvalues of the generator of the Perron-
Frobenius operator built from the k-means-clustered time series. We
iterate the algorithm until the modularity parameter becomes negative,
while we record its value at each subdivision.

3. We determine the optimal number of clusters m for each time scale
based on these values. A value of m is chosen to only keep the most
connected subgroups of fine clusters, which take on the highest modu-
larity values, and to discard the less connected, and therefore less rel-
evant clusters. Based on these values, we obtain the almost-invariant
sets with the desired number of clusters for each time scale and the
parameter ∆C.

4. We finally apply the matrix-perturbative method described above to
compute the generator of the transition matrix.
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After the first three steps, it is instructive to determine the robustness of
each coarse clusterization to a variation of the corresponding time parame-
ter, assessing changes in the unstable regions in state space at the interface
between different almost-invariant sets. To this end, we execute the modified
Leicht-Newman algorithm two additional times and vary the time parame-
ter t, corresponding to the time scale under consideration, by ∆t ≪ t while
keeping Mmin fixed. We hence obtain three different clusterizations for each
value of the time parameter, {At

1, A
t
2, . . . , A

t
m}, {At+∆t

1 , At+∆t
2 , . . . , At+∆t

m },
{At−∆t

1 , At−∆t
2 , . . . , At−∆t

m }. These sets of clusters are used to quantify changes
in the assignment of fine clusters to coarse ones ∆C, initiated by a variation
in the time parameter. We define

∆C =
max{#(At+∆t

i ∩ At
j)}+max{#(At−∆t

i ∩ At
j)}

2N
, (27)

with i, j ∈ [1,m]. That is, we define the quantity ∆C as the average of the
number of intersections between the coarse clusters obtained at time t+∆t
and t, and between those obtained at t−∆t and t divided by the total number
of fine clusters. Since each label of a coarse cluster is arbitrary, the clusters
are chosen to maximize the number of intersections.

Since we slightly vary the time parameter in each cluster, we expect clus-
ters belonging to the same almost-invariant set to maintain their assignment
in each clusterization. In contrast, clusters at the interface will be sensitive
to variations in the time parameter and will thus be assigned to different
almost-invariant sets. The intersection of these clusterizations will then de-
lineate the former, characterized by extensive regions of state space with a
slow relaxation of the corresponding diagonal elements of the transition ma-
trix, from the latter, formed by small regions at the interface of the former
and distinguished by rapid escapes in phase space, associated with a fast
decay of the associated diagonal elements of the transition matrix.

6. Results

We first apply the algorithms described above to three idealized models,
whose dynamics are expressed entirely in three-dimensional state space and
for which we assess the accuracy of our algorithms. Following this, we study
data sets related to more complex and high-dimensional dynamical systems.
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Figure 1: Attractors for the three idealized models from different angles at the finest clus-
ter resolution. The potential consists of eight minima in three-dimensional space with
stochastic transitions between the wells. The Lorenz equations are a well-studied deter-
ministic chaotic dynamical system. And the Newton-Leipnik system is augmented with
noise and exhibits stochastic transitions between two chaotic attractors.
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Figure 2: The Modified Leicht-Newman Algorithm applied to the potential-well problem
at various time scales. As the time scale becomes smaller, the algorithm distinguishes be-
tween more subsets of state-space, up to the finest resolution consisting of eight different
states. The top row shows the binary partitioning based on the modified Leicht-Newman
algorithm. The number in the circles indicates the modularity parameter at each classi-
fication stage of state space. The middle panel shows the classification of state space by
coloring like states with similar colors. The last row shows the resulting graph structure
of the partitioned state-space. The errors are ∆C = 0 for the first two timescales and
∆C = 5.5× 10−5 for the last timescale.
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Figure 3: The clustering algorithm applied to the Lorenz equations and the Newton-
Leipnik system. We applied the modified Leicht-Newmann algorithm using a time scale
τ ≈ 0.63 to the Lorenz system and a time scale τ ≈ 0.89 to the Newton-Leipnik sys-
tem. These time scales correspond to the third non-zero eigenvalues of both systems. The
Lorenz dynamics are partitioned into four subsets of state space. The Newton-Leipnik
system results in a partitioning into three subsets of state-space, with the yellow region
representing a separate attractor and the red-blue region representing a further partition-
ing of the larger chaotic attractor. The last column shows a representation of the transition
probabilities between different subsets of state space. The score for the Lorenz system is
∆C ≈ 0.01683 and for the Newton-Leipnik system is ∆C ≈ 0.0002.
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Figure 4: Matrix elements of the transition matrix Pij(t) as a function of time, considering
the almost-invariant sets of the Newton-Leipnik system corresponding to a time scale
τ = 1.2, the same used in Figure 3. The matrix elements have been constructed considering
the time series of the Markov states (black curves), using Q from Eq. (17) (blue curve)
and Qp from our proposed method (red curves).
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6.1. Idealized Models

Below we present the three idealized models for our preliminary test of
the algorithms. In all three cases a k-means algorithm with 2000 centroids
has been used to construct the fine clusters which will subsequently be used
to determine the almost-invariant sets. See Figure 1.

6.1.1. Three-dimensional potential well

We consider a three-dimensional dynamical system whose state evolves
in time according to the overdamped Langevin equation

ẋ(t) = −∇U(x) + σξ(t), (28)

with t ∈ [0, 3.3 · 105], a time step dt = 0.03, and U denoting the potential
given as

U(x) =(x1 + A1)
2(x1 − A1)

2 + (x2 + A2)
2(x2 − A2)

2

+ (x3 + A3)
2(x3 − A3)

2,
(29)

with σ = 0.75. The variable ξ(t) represents Gaussian white noise with a zero
mean and a standard deviation of ⟨ξi(t)ξj(s)⟩ = δijδ(t − s) ∀ i, j = 1, 2, 3.
We choose A1 = 1.05, A2 = 1.1, A3 = 1.15.

The three different choices of Ai i = 1, 2, 3 generate three different heights
between the potential wells, and thus three different transition rates. These
rates are related to the potential through the Eyring-Kramers law [27, 28],
which for a d-dimensional system states that

rba =
1

2π

√√√√ |λ1(b)|
∏d

j=1 λj(a)∏d
i=2 λi(b)

e(U(a)−U(b))/σ, (30)

where 0 < λ1(a) < λ2(a) < · · · < λd(a), λ1(b) < 0 < λ2(b) < · · · < λd(b)
are, respectively, the eigenvalues of the Hessian ∇2U(x) computed at the
minimum of the well a and at the minimum of the boundary b separating
the wells.

6.1.2. The Lorenz-63 system

We study the Lorenz-63 system [29] given by

ẋ(t) = σ(y(t)− x(t))

ẏ(t) = −x(t)z(t) + ρx(t)− y(t)

ż(t) = x(t)y(t)− βz(t),

(31)
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with t ∈ [0, 1000], and a time step dt = 0.01. We select σ = 10, ρ = 28 and
β = 8/3 for which the system exhibits chaotic behavior.

6.1.3. The stochastic Newton-Leipnik model

We considered a stochastic version of the Newton-Leipnik model [30]

ẋ1(t) = −ax1(t) + x2(t) + bx2(t)x3(t) + σ1ξ1(t),

ẋ2(t) = −x1(t)− ax2(t) + 5x1(t)x3(t) + σ2ξ2(t),

ẋ3(t) = cx3(t)− 5x1(t)x2(t) + σ3ξ3(t),
(32)

with t ∈ [0, 5000], σ1 = σ2 = σ3 = 0.04, a time step dt = 0.01, and x1, x2, x3
denoting the state variables. The parameters a, b, c are positive constants,
and ξ(t) represents a Gaussian white-noise source with a zero mean and a
standard deviation of ⟨ξi(t)ξj(s)⟩ = δijδ(t − s). The Newton-Leipnik model
is characterized by a double strange attractor between which the system
oscillates due to the stochastic forcing.

6.1.4. Applying the methodology

In Figure 2 we applied to the multi-well problem the second step of the
three-step algorithm outlined above. We considered the relevant time scales
of each system (via an ordering of the eigenvalues of the generator) and for
each scale we display a graph showing the agglomeration of the fine clusters
into connected communities as long as the corresponding modularity param-
eter, reported on the edge of each graph, remains positive. The resulting
coarse-grained state space and graph partitioning are reported.

The variation in connectivity between different regions with the chosen
time scale is evident. In particular, we notice more significant changes for
those regions that are connected only through a stochastic forcing as the
time scale increases. In other words, on longer time scales the transition
probability between these regions becomes larger, which in turn makes them
less connected. This feature can be observed for all values of the modu-
larity parameter that correspond to bisections in the multi-well potential
system. Additionally, for the Newton-Leipnik system, the top vertex of the
graphs, which corresponds to the first fine-cluster bisection associated with
the two different strange attractors, demonstrates the same behavior. In-
side the strange attractor, it is more difficult to find similar patterns since
the connected regions change across all considered time scales. It is evident
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from the figures that the proposed algorithm correctly groups the clusters
according to the model-intrinsic time scales. For the multi-well potential, it
assembles the fine clusters into eight, four, and two communities according
to the three different characteristic rates of the system. The resulting coarse
clusters are robust to variations in the corresponding time parameter.

For chaotic systems, the coarse clusters are more sensitive to our particu-
lar choices. In Figure 3 we display our results for the Lorenz and the stochas-
tic Newton-Leipnik systems. In the case of the Lorenz equations, phase space
has been partitioned into four sets. The first branch of the modified Leicht-
Newman algorithm splits state space according to the quasi-invariant sets of
the Lorenz system. The second partition then further subdivides the quasi-
invariant set. In the stochastic Newton-Leipnik system, the first partition of
the modified Leicht-Newmann algorithm separates the two chaotic attractors.
The second division then further bisects one of the chaotic attractors.

In Figure 4 we compare the elements of the transition matrix Pij(t) as a
function of time, considering the almost-invariant sets of the Newton-Leipnik
system at τ = 1.2 (the same value from Figure 3). The matrix elements have
been constructed based on a time series of Markov states, using Q from Eq.
(17), in blue, the corrected Qpert from our proposed method, in red, and a
direct calculation of the Perron-Frobenius operator, in black. We consider
the direct calculation of the Perron-Frobenius operator for time t as the
“ground truth”. As is apparent from the subfigures, our algorithm estimates
the transition rate matrix far more accurately, considering the close match
between the red and black curves. For a sufficiently long time scale, each
column of the matrix converges to the steady-state equilibrium distribution,
and the rows thus converge to a uniform value.

6.2. High-Dimensional Models

6.2.1. The Kuramoto–Sivashinsky equation

Before proceeding to realistic and noise-contaminated data sets, we study
the one-dimensional version of the Kuramoto–Sivashinsky (KS) equation [31,
32, 33] given as

ut(t, x) + uxx(t, x) + uxxxx(t, x) +
1

2
u2x(t, x) = 0, (33)

which is solved on a domain of size L = 34 with 64 grid points. For time step-
ping, the nonlinear terms use a forward-Euler scheme, and the linear terms
are treated by a backward-Euler method with a time step of ∆t = 0.017. The
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Figure 5: Numerical solution of the Kuramoto–Sivashinsky equation on a domain of size
L = 34 (left). We show a coarse grained projection according to states assigned by the
modified Leicht-Newman algorithm using a timescale τ = ∆t (top right). A time history of
E(t) =

∫
Ω
u2dx, with colors associated with the coarse-grained dynamics, is shown at the

bottom right. We associate the fifth and sixteenth states of the coarse grained dynamics
(top right) with the regular structures and patterns observed within the two time intervals,
marked by the yellow lines (left) and corresponding black lines (top and bottom right).
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system evolves to a final time of T = 200, 000. The domain length L = 34
has been chosen to establish chaotic transitions between two qualitatively
different system behaviors: a temporally coherent solution (associated with
fixed points of the underlying system), and a chaotic state.

We first use k-means with 2048 clusters where distances are defined on
the entire state of 64 points. We then apply the modified Leicht-Newman
algorithm with a time scale of τ = ∆t, which reduces the state space to
18 clusters. The result is displayed in Figure 5. Among the 18 identified
clusters, two are associated with the temporally coherent dynamics (in our
case, states 16 and 5). The left-most plot shows a space-time plot of the
Kuramoto-Sivashinsky solution, with four yellow lines serving as the start and
end of time intervals during which coherent motion is observed. The top right
plot shows the associated cluster labels (from the modified Leicht-Newman
algorithm) as a function of time, with four black lines serving the same role
as the yellow lines before. The bottom right plot depicts the evolution of
the energy measure E(t) =

∫
Ω
u2dx, using the same coloring scheme as the

coarse-cluster dynamics in the top right figure. A clear correlation between
the energy dynamics and the temporally coherent structures is discernible.

6.2.2. Experimental data from PIV measurements

The final example consists of data sampled from experiments via Particle-
Image Velocimetry (PIV). The data set describes the transverse flow through
a cylinder bundle, as encountered in various industrial applications such as,
e.g., cooling rods or heat exchangers. The cooling fluid, emerging from the
cylinder bundle, forms a jet that quickly becomes unstable and settles into a
quasi-periodic limit-cycle behavior with two attracting dynamics, referred to
as a ‘flip-flop state.’ Similar quasi-bistable phenomena occur, for example,
in the wake past bluff bodies.

In our case, we consider a time-resolved data sequence of two-dimensional
velocity-field slices in an interrogation domain of 40.36mm in the streamwise
(vertical) and 32.08mm in the cross-stream (horizontal) direction, which is
discretized into a 63× 79 Cartesian and equispaced grid. Only two in-plane
velocity components are recorded. The data sequence is sampled uniformly
in time, with a 4ms distance between two consecutive snapshots. With a
cylinder gap of 10.7mm and a mean jet velocity of 0.663m/s, the result-
ing Reynolds number based on the volume flux (18 m3/h) and the cylinder
diameter (12mm) comes to Re = 3000.

The jet progresses through a sequence of flow-transverse oscillations with
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Figure 6: First eight snapshots of the particle-image velocimetry data with the corre-
sponding time. The color of the arrows corresponds to the speed of the velocity field, with
lighter colors corresponding to faster speeds.
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Figure 7: Clustering of PIV data sequence. First, an SVD is taken of the data and only the
first 100 modes are retained. Then, the remaining time series is clustered into 16 groups
using a k-means algorithm. Finally, the modified Leicht-Newman algorithm is applied,
revealing two main partitions of state space corresponding to a flow that sways between a
predominantly left and right state.
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two quasi-equilibrium points emerging: a left- and right-leaning mean state
about which the jet fluctuates. In contrast to previous examples, the pro-
cessed data set contains a considerable amount of measurement noise which
will probe the robustness of the clustering algorithm and the subsequent data
analysis.

In Figure 6, we plot eight snapshots of the PIV data. The dimensionality
of the data has been reduced by considering only the first 100 singular vectors,
which account for 93% of the total variance.

Figure 7 shows the centers of the eight clusters used in the k-means algo-
rithm to divide the state space. In addition, we display the semi-invariant sets
assigned to each of cluster obtained from the modified Leicht-Newman algo-
rithm with a time parameter of t = 4ms. The algorithm correctly separates
the left- from the right-leaning mean state about which the jet fluctuates.

7. Conclusions

In conclusion, we have presented two algorithms that are used in tandem
to produce a reduced statistical description of a dynamical system. The first
algorithm focused on determining an optimal partition of state space based
on a new modularity criteria adapted from the Leicht-Newman algorithm.
The second algorithm determined a data-driven generator for a stochastic
process that works over a broad range of temporal scales. We then applied
the methodology to five different systems: three low-dimensional dynamical
systems and two high-dimensional dynamical systems. The low-dimensional
systems were selected to demonstrate the method on stochastic and chaotic
dynamical systems. The high-dimensional systems were chosen to illustrate
the ability of the method to provide information on the underlying system.

There are various future directions for the present study. Applying the
methodology to other dynamical systems is expected to yield insight into the
structure and the statistical properties of the system. In particular it would
be interesting to apply the methodology to high-dimensional dynamical sys-
tems arising from fluid mechanics or climate science [34, 35]. Furthermore,
as mentioned in the introduction, modularity maximization has a number of
known problems [19, 20, 21, 22]. Developing new clustering algorithms for
Perron-Frobenius operators is a promising direction for further study.
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