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Predictions of x-ray scattering spectra for warm dense matter
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We present calculations of x-ray scattering spectra based on ionic and electronic structure factors that are
computed from a new model for warm dense matter. In this model, which has no free parameters, the ionic
structure is determined consistently with the electronic structure of the bound and free states. The x-ray scattering
spectrum is thus fully determined by the plasma temperature, density and nuclear charge, and the experimental
parameters. The combined model of warm dense matter and of the x-ray scattering theory is validated against an
experiment on room-temperature, solid beryllium. It is then applied to experiments on warm dense beryllium and
aluminum. Generally good agreement is found with the experiments. However, some significant discrepancies
are revealed and appraised. Based on the strength of our model, we discuss the current state of x-ray scattering
experiments on warm dense matter and their potential to determine plasma parameters, to discriminate among
models, and to reveal interesting and difficult to model physics in dense plasmas.
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I. INTRODUCTION

Warm dense matter (WDM) refers to plasmas of roughly
solid density with temperatures of ∼1 to 102 eV. Because
few of the simplifying limits applicable to classical plasma
and condensed matter physics can be used in the WDM
regime, it is difficult to model. And while transient WDM
states occur in many dynamic experiments, its opacity makes it
difficult to probe experimentally. X-ray scattering has become
an important diagnostic of WDM in the past decade [1–6];
however, only recently have the models used to diagnose
WDM been tested against high-quality data from experiments
with cold materials [7]. This benchmarking has revealed
some underlying problems with widely used scattering models
[8]. Understanding the properties of WDM is important for
planetary research [9], modeling dense stars such as white
dwarfs [10], and for inertial confinement fusion [11]. In this
paper we calculate x-ray scattering spectra from a new model
of WDM that is based on a unified approach in which all
necessary plasma properties are calculated consistently.

Our approach uses the model of Refs. [12,13],1 which
improves on the formalism of Ref. [14] to calculate the
electronic structure (bound and free states) as well as the
ionic structure of the plasma. The model [12] combines an
average atom model based on density functional theory (DFT)
to compute the electronic structure of the plasma with the
integral equations of fluid theory for the ion interactions,
enabling an efficient calculation of the plasma properties. The
inputs to the model are the plasma mass density, temperature,
and the species (nuclear charge and mass). For a given choice
of exchange and correlation potential, there are no adjustable
parameters. The model then gives the ion-ion and ion-electron
interaction potentials, the ion pair distribution function, the
bound and continuum wave functions, bound state energies,

*starrett@lanl.gov
1Specifically we use the QM-IS model of Ref. [13].

density of states, ionization fraction, and naturally accounts
for resonances and pressure ionization, all calculated self-
consistently. The ionic pair distribution functions have been
shown to agree very well with ab initio simulations [12,13]
over a wide range of atomic numbers and plasma conditions.

Using the outputs from this model, we calculate x-ray scat-
tering spectra using the Chihara formalism [15] (Sec. II) which
is based on a chemical picture of the plasma in which there are
well-defined ions, whose bound electrons are clearly separated
from the continuum electrons. In this context, the scattering
spectrum is the sum of three components: elastic, bound-free,
and free-free. The elastic component is calculated from the
static ion-ion structure factor and the density of those electrons
which move with the ion, all of which are computed from the
model of Ref. [12]. We calculate the bound-free component
with the approach proposed by Johnson et al. [16], using the
bound and free wave functions from the model of Ref. [12].
Finally, for the free-free component we use both the RPA
[17] and the Born-Mermin (BM) approximation to account for
ion-electron coupling [18–20] and compare the results.

We first validate our approach (Sec. III) with a comparison
to an x-ray scattering experiment on solid beryllium at
ambient conditions [7] (hereafter referred to as the “cold
Be” experiment), for which the target conditions and energy-
resolved intensity profile of the x-ray probe are accurately
known and controlled. Though the model [12] is primarily
designed for plasmas, the comparison with this experiment
validates the overall implementation and also gives insights
into the limitations of the approximations used.

We then compare to x-ray scattering experiments on warm
dense beryllium [4] (Sec. IV) and aluminum [6] (Sec. V). In
contrast to the cold Be experiment, these experiments are more
technically challenging, resulting in weaker, noisier signals
and possibly uncontrolled systematic effects in the scattered
spectrum. We consider the effects on the scattered spectrum of
variations in density and temperature as well as uncertainties
in the x-ray source spectrum. Some points of disagreement
with the experimental data are found and discussed.
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In Sec. VI we present an x-ray scattering spectrum for warm
dense Be in a hypothetical experiment. We assume the same
target conditions as in the experiment [4] but use the x-ray
probe parameters from the cold Be experiment [7]. Comparing
these spectra to the spectra from the cold Be experiment
reveals the effects of increased temperature and density and
the experimental requirements to detect them. In Sec. VII,
an example of an x-ray scattering spectrum for a higher Z

element (Ti) highlights resonant features whose experimental
characterization is of interest to constrain models of WDM.
Finally, we review our analysis of these experiments with our
predictive model for x-ray scattering spectra and comment on
the experimental requirements to constrain models of WDM.

II. THEORY

In x-ray scattering experiments in WDM, a beam of probe x
rays with a known spectral intensity profile scatters off a WDM
sample and the x rays are collected at a fixed scattering angle
θ , and their spectral intensity profile measured. The scattering
is described by the dynamic structure factor S(k,ω), where
[18]2

k = 2k0 sin

(
θ

2

)
(1)

is the magnitude of the momentum transfer to the photon. �k =
�k1 − �k0, where �k0 and �k1 are the initial and final photon wave
numbers, respectively, and ω = ω0 − ω1 is the energy transfer
to the electron. Chihara [15] has shown that by assuming a
clear distinction between bound and free electrons, S(k,ω)
can be written as the sum of three terms as follows:

S(k,ω) = |fI (k) + q(k)|2Sii(k,ω)︸ ︷︷ ︸
elastic

+ Z̄See(k,ω)︸ ︷︷ ︸
free-free

+ Sbf (k,ω)︸ ︷︷ ︸
bound-free

.

(2)

This expression is the basis of nearly all theoretical cal-
culations of x-ray scattering spectra of WDM after various
approximations have been applied to each of the three terms
[8,16,18,21]. The essence of the present contribution is that
Eq. (2) is evaluated with a self-consistent model of the
electronic and ionic structures of the plasma.

The elastic component is due to photons elastically scat-
tered by electrons that follow the motion of the ions. Due
to their large mass, the dynamic structure factor of the ions
Sii(k,ω) is a very narrow feature in frequency. While it is rich
in information regarding ion dynamics [22], it can be suitably
approximated as Sii(k,ω) = Sii(k)δ(ω) for our purposes as
it is not resolved in the experiments considered here. In
the language of the model [12] the electrons that follow
the ion motion are described by the pseudoatom electron
density n

pa
e (r) which can be split into bound (ion) and free

(screening) components, nion
e (r) and nscr

e (r). The quantities
fI (k) and q(k) are the Fourier transforms of nion

e (r) and nscr
e (r),

respectively. These, together with the ion-ion structure factor

2Unless otherwise noted, we have used atomic units throughout,
with � = me = kB = e = 1, where the symbols have their usual
meaning.

Sii(k), are all determined within the model [12] without further
approximation.

The free-free component describes scattering from free
electrons which can be calculated using the random-phase
approximation (RPA). The RPA treats the free electrons as
a collisionless plasma, a questionable approximation in the
WDM regime [8]. Nevertheless it has been widely used to
model WDM x-ray experiments [16,18,23] with apparent
success.

In the RPA approximation the free-free component is a
function only of the free electron density n̄0

e , the average
ionization Z̄, and the temperature T . n̄0

e and Z̄ are determined
in the model [12] for the given plasma conditions (temperature,
mass density, and nuclear charge). The ion charge Z̄ is
defined as the number of positive energy electrons per nucleus
and is intrinsically linked to the determination of the ion
structure.

It is possible to extend the RPA with the Born-Mermin (BM)
approximation to include the effects of electron-ion collisions
in a perturbative way [18,19]. In addition to its dependence
on n̄0

e , Z̄, and T , this approximation requires a knowledge
of the dynamical electron-ion collision frequency, which is
calculated in the Born approximation [18],

νB(ω) = −i

24π3Z̄

∫ ∞

0
dk k6

[
V S

ie(k)
]2

Sii(k)
1

ω

× [
εRPA
e (k,ω) − εRPA

e (k,0)
]
, (3)

where εRPA
e is the RPA dielectric function [24] and V S

ie is the
statically screened electron-ion interaction potential. In the
notation of the model [12]

βV S
ie(k) = −CIe(k)

εRPA
e (k,0)

, (4)

where −CIe(k)/β is the Fourier transform of the electron-ion
pseudopotential, which is determined within the model.

The dimensionless scattering parameter α provides a
distinction between two regimes in See(k,ω) and is given by
α = kscr/k [18] where kscr is the screening wave vector,

k2
scr = 2πβne

I−1/2(η)

I1/2(η)
, (5)

In is the Fermi integral of index n, β = 1/kT , η = βμe is
the dimensionless chemical potential of the electrons, and ne

is the (average) free electron density. This expression for kscr

recovers the Thomas-Fermi screening length at T = 0 and
the Debye screening length at high T . Collective scattering
of the x rays occurs for α � 1, where the free electrons
can screen the relatively slow density oscillations caused
by the x-ray electromagnetic waves. For α � 1, x rays
are scattered noncollectively by electrons whose density is
essentially “frozen” over the period of the wave. Based on
finite-temperature quantum molecular dynamics calculations
to obtain a realistic estimate of the electron-ion collision
frequency νB(ω), the authors of Ref. [25] found that the
BM approximation is poor for α > 1 but becomes quite
reasonable in the noncollective regime (α < 1) and improves
as α decreases. As we will see below, the BM approximation
and the RPA are nearly identical for α � 0.5. We can expect
the RPA (and its BM extension) to give a good approximation
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to See(k,ω) in the noncollective regime. The convolution
of the free-free feature with a relatively broad probe beam
(experimentally, a width comparable to the plasmon frequency
is not uncommon) can largely mask the difference between the
RPA and more accurate calculations of See(k,ω) for values of
α relevant to warm dense matter.

Finally, the bound-free component of the dynamical struc-
ture factor describes inelastic scattering from bound electrons
which are photoionized in the process. This is determined from
matrix elements between bound and continuum wave functions
following the formulation of [16]

Sbf (k,ω) =
∑
n�

4(2� + 1)p

π
F(εn�)(1 − F(ε))M(εn�)

×
∑
�1�2

A�1��2

∣∣I�1��2 (p,k)
∣∣2

(6)

I�1��2 (p,k) = 1

p

∫ ∞

0
Pε�1 (r)j�2 (kr)Pn�(r)

√
f cut(r)dr, (7)

where F is the Fermi-Dirac occupation factor, ε = p2/2 is
the energy of the continuum electron state, and εnl is the
energy of the bound state of orbital angular momentum � and
principal quantum number n. Pn� and Pε� are the radial wave
functions [16] of the bound (initial) and continuum (final)
states, respectively, j� is the spherical Bessel function of index
�, and

A�1��2 = (2�1 + 1)(2�2 + 1)

(
�1 � �2

0 0 0

)2

, (8)

where (�1 � �2
0 0 0 ) is the Wigner 3-J symbol. All radial wave

functions are produced by our model of WDM [12].
This expression differs from Eq. (22) of Ref. [16] as we

include the unoccupied fraction of the final state 1 − F(ε) [8].
The factors M(εn�) and f cut(r) are integral to the definition
of the ion electron density that ensures continuity as a bound
state crosses into the continuum [12]. The first of these factors,
M(εn�), is a partial occupation factor for weakly bound states
that are not well separated in energy from the continuum states.
The second, f cut, limits spatially the ion electron density of
weakly bound states that can otherwise extend to several times
the ion sphere radius [12]. We stress that M(εn�) and f cut(r)
affect only weakly bound states whose contributions to x-
ray scattering from the theory of Chihara (2) are uncertain
since those bound electrons are not clearly distinguishable
from those in the continuum. In regimes where the bound and
continuum states are well separated, M(εn�) and f cut(r) have
no effect. Last, we note that the bound and free wave functions
appearing in Eq. (7) are orthogonal by construction, which
has been demonstrated to be an important property for such
calculations [26].

Comparisons with experimental data require that the the-
oretical spectrum given by Eq. (2) be convolved with the
spectral distribution of the incident x-ray photons [18]. Since
the ion elastic feature is modeled as a δ function in frequency,
the calculated elastic feature takes the shape of the incident
x-ray energy profile. Finally, all the calculations presented
here assume thermal equilibrium between ions and electrons

(Te = Ti = T ), although this is not an intrinsic limitation of
our model.

III. COLD SOLID BERYLLIUM

In order to validate these approximations and our overall
approach, we compare our calculations to an x-ray scattering
experiment on solid Be at normal conditions (Fig. 1) [7]
that probe the bound-free and free-free terms in Eq. (2). In
this experiment a very narrow x-ray probe with a Gaussian
profile [1.3-eV full width at half maximum (FWHM)] scattered
from the cold Be target and photons were collected at several
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FIG. 1. (Color online) Comparison of theoretical x-ray scattering
spectra with an experiment on solid beryllium at ambient conditions
[7]. “Total” corresponds to the sum of the bound-free and free-free
terms, calculated with the Dirac exchange functional. The solid cyan
(light gray) line is the total using Slater exchange in the calculation
of bound and free electronic states. It is mostly indistinguishable
from the calculation using Dirac exchange except near the bound-free
threshold, which is shifted slightly to the right. Note that to match
the presentation of the data in Ref. [7], the frequency axis is reversed
from the convention used in WDM experiments and in Figs. 3–5 and
7 (here ω = ω0 − ω1).
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scattering angles and at an energy of 9890 eV. The energy of
the incident beam was varied to scan the energy range seen
in Fig. 1. This introduces an additional weak k dependence in
the spectrum as the energy is varied for each scattering angle
[Eq. (1)]. We have ignored this and used the fixed k values
given in Refs. [7,8] to generate the theoretical spectra. The
model [12] cannot be applied directly at the experimental con-
ditions where the Be is solid since it assumes a fluid structure.
However, the narrow Bragg peaks of Sii(k) in the solid material
ensure small elastic contributions to the scattering signal at
most k values. The inelastic scattering is dependent primarily
on the electronic properties, which do not vary significantly
when T is much less than the Fermi temperature (14.3 eV for
ambient Be). We have verified that solutions for solid density
Be at T = 0.1 eV and 0.2 eV show no significant change in
the bound-free and free-free contributions, indicating conver-
gence with respect to temperature. It is therefore possible to
make a meaningful comparison with this experiment. Note
that the data have been normalized to calculations of the
spectra with the method of real-space Green’s function [7] of
the electronic structure which effectively provide an absolute
calibration of the data. We can thus compare our own
calculations of the spectrum directly with this normalized data.
Given the excellent agreement of the theory of Ref. [7] with the
data, this also allows a direct comparison of two independent
theories.

Using the Dirac exchange potential [27]

Vexch(r) = −
[

3ne(r)

π

]1/3

(9)

to compute the electronic states, our model predicts one bound
state (1s) under these conditions with an energy of −86.1 eV
with respect to the lowest continuum state. On the other hand,
Fig. 1 shows that the calculated threshold for the bound-free
term is ω = 98.0 eV. The difference is due to the occupation
of continuum states, which shifts the threshold to the first
unoccupied state at the top of the Fermi sea. The shift is given
by the electron chemical potential (11.9 eV).3 In Fig. 1 it
is seen that the experiment finds the bound-free threshold at
∼113 eV. The difference of 15 eV with our calculation is
largely due to the DFT treatment of the electrons in the model.
It is well known that the DFT systematically underestimates
the binding energy of bound states by an amount that depends
on the choice of exchange-correlation functional. One should
not expect the simple Dirac functional to give very accurate
results. This can be illustrated by replacing the Dirac functional
with the Slater functional [28],4 which, for all its simplicity,
gives better predictions of the bound state energies. The result
is shown in Fig. 1 as the solid cyan (light gray) line which lies
directly under the Dirac exchange calculation labeled “total”
(solid dark gray line) except near the bound-free threshold. The
Slater exchange calculation gives a threshold energy of 107 eV,
in better agreement with the experimental value and improving
the agreement with the corresponding jump in S(k,ω). Away

3This would be equal to the Fermi energy if the continuum electrons
were truly free.

4This is simply 3
2 times the Dirac exchange [Eq. (9)].

from the threshold, both functionals lead to very similar results
and recover the long range bound-free tail quite well. Except
for the position of the threshold, our calculation of the bound-
free contribution is in very good agreement with the real-space
Green’s function calculation of Ref. [8].

For the free-free contribution we show only the RPA
calculation in Fig. 1. The BM approximation depends strongly
on the ionic structure factor Sii(k) [Eq. (3)] which we are
unable to calculate for a solid with our model. We find that the
RPA free-free contribution is in reasonable agreement with the
experiment for all scattering angles probed in the experiment.
However, it is systematically too narrow at its base and too high
at its peak (by 5–20%). This is consistent with the calculations
of Ref. [26], who also show that the BM approximation differs
little from the RPA in this regime. Furthermore, the fact that
the RPA works fairly well in this strongly noncollective regime
(α = 0.21–0.48 in this experiment) agrees very well with the
results of Ref. [25]. The limitations of the RPA are highlighted
by the high spectral resolution of this experiment (1.3 eV).
In warm dense matter experiments, where the resolution is
typically ∼100 eV or more, these small differences would be
invisible.

Overall, the agreement of our model with this experiment
is good, bearing in mind that the model [12] is not designed
for solids but for plasmas. Systematic deviations with the
experiment and with a more accurate theory developed for
cold solids [7] are well understood and can be quantified to a
good extent. With these caveats, this validates our theoretical
approach to the bound-free and free-free contributions to the
x-ray scattering spectrum.

IV. WARM DENSE BERYLLIUM

We now turn our attention to the WDM x-ray scattering
experiment of Ref. [4]. In that experiment 6.2-keV x rays
were scattered from warm dense beryllium and collected at
25◦ and 90◦. From the 90◦ measurements the average free
electron density of the plasma was determined to be n̄0

e =
7.5 × 1023 cm−3 (±7%), corresponding roughly to 3 times the
normal density (5.55 g/cm3), with Z̄ = 2 (±25%) and an ion
temperature of 13 eV (±10%). From the 25◦ measurements the
average free electron density the plasma was determined to be
n̄0

e = 7.5 × 1023 cm−3 (±6%), while the electron temperature
was found to be 13 ± 3 eV [4], both in excellent agreement
with the 90◦ data. The source spectrum was measured and is
given in Ref. [4].

In Fig. 2 we show the k dependence of the elastic component
of Eq. (2) for a temperature of 13 eV and mass density of
5.55 g/cm3 as calculated with our model using the Dirac
exchange potential. For this density and temperature, the
model predicts that n̄0

e = 7.46 × 1023 cm−3, Z̄ = 2.01, and
finds one bound state with a binding energy of −69.5 eV, with
an occupation of 1.99, in excellent agreement with the values of
Ref. [4]. From the figure we see that as k → 0 fI (k) and q(k) go
to the number of bound and free electrons per ion, respectively.
The experiment probes the region where the ion-ion structure
factor Sii(k) is rising with k. This is confirmed by a quantum
molecular dynamics calculation [25] which agrees well with
the prediction of our model (Fig. 2). For the smaller angle
both fI (k) and q(k) are significant, while for 90◦ the model
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FIG. 2. (Color online) k dependence of the elastic component
of the structure factor for beryllium at 13 eV and 5.55 g/cm3 as
calculated with the WDM model of Ref. [12]. A quantum molecular
dynamics calculation of Sii(k) is also shown [25]. The vertical dotted
lines correspond the k values of the experiment at 25◦ (k = 0.720a−1

B )
and 90◦ (k = 2.35a−1

B ). These correspond to scattering parameters of
α = 1.73 and 0.53, respectively. The quantities shown on the vertical
axis are dimensionless.

predicts that q(k) is negligible compared to fI (k). We thus
expect a partial cancellation of the variations in Sii(k) and of
q(k) between these two scattering angles, as shown by the
relatively flat behavior of the elastic peak between the two
experimental k values.

In Fig. 3 we compare directly to the experimental data for
both scattering angles. The source spectrum which we used to
convolve our theoretical spectrum is shown in the inset. The
experimental data are arbitrarily normalized, and we show
the same theoretical x-ray spectrum scaled by two different
choices of normalization. First, consider the case where we
have normalized to the height of the right-hand peak of the
experimental elastic feature (labeled “normalization A” in the
figure). For the 90◦ spectrum, this peak is recovered well
but the spectrum disagrees with the experiment everywhere
else. When the theoretical spectrum is normalized to the
left-hand peak in Fig. 3 (“normalization B”) there is good
agreement with the measured inelastic feature for 90◦ but it
no longer matches the right-hand peak of the elastic feature.
At a scattering angle of 25◦ (lower panel of Fig. 3), both
normalizations match the data reasonably well.

Comparing the source spectrum (inset in Fig. 3) to the 90◦
data, we see that the right-hand peak has become stronger in
the scattered spectrum relative to the left-hand peak. As noted
earlier, in the Chihara formulation [Eq. (2)] the elastic feature
of the scattered spectrum simply reflects the shape of the source
spectrum. On the other hand, the inelastic features (bound-free
and free-free) are down-shifted in energy from the incident
energy (6.2 keV) and will contribute more to the height of the
left-hand peak than to the right-hand peak (Fig. 4). Thus, in the
scattered doublet, the left-hand peak can only become stronger
with respect to the right-hand peak, which is the opposite of
what is observed in the 90◦ spectrum. The observed peak ratio
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FIG. 3. (Color online) Comparison of synthetic spectra to an
x-ray scattering experiment on warm dense beryllium [4] assuming
a temperature of 13 eV and density of 5.55 g/cm3 (threefold
compression). The experimental spectra are in arbitrary units. The
two theoretical curves show the same calculation normalized to match
the magnitude of either the right-hand peak (normalization A) or the
left-hand peak (normalization B). The inset shows the spectrum of
the incident x-ray source.

in the 90◦ data cannot be reconciled on theoretical grounds
with the peak ratio in the source spectrum provided. The reason
that the 90◦ data is not well matched using normalization A
could be due either to source variability or to variations in the
intensity of the optically thick resonance line at 6181 eV as
the viewing angle (and thus line-of-sight depth) between the
source and the sample is changed. Given the ambiguity in the
scaling of the model spectrum for this experiment, we consider
the agreement with the data to be good.

In Fig. 4 we show the components of the calculated
dynamical structure factor, using normalization B. For both
angles, the two approximations for the free-free component,
the RPA and the BM approximation, are very close to each
other. For 90◦ the bound-free contribution becomes apparent
but remains relatively small. However, the long-range tail
does not recover the experiment well, in contrast to the
excellent agreement we found for solid beryllium (Fig. 1).
In the 25◦ spectrum the bound-free contribution is negligible.
The free-free term is shifted to lower energy transfer, as
expected from the change in the Compton shift ω0 − ω1 ∼
EC = k2/2 = 2k2

0 sin2 θ/2 and, while it is not small, it is
largely masked by the broad elastic peak produced by the
double-peaked source spectrum. At this angle the scattering
is strongly collective (α = 1.73) and the (unconvolved) RPA
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FIG. 4. (Color online) Same as Fig. 3 for warm dense Be but
showing the separate contributions to the spectrum. Both the RPA
and the Born-Mermin calculations of the free-free contribution are
shown. The curve labeled “total” uses the BM result for the free-free
component. The theoretical curves correspond to normalization B of
Fig. 3.

(and the BM approximation) probably overestimate See(k,ω)
by ∼50% [25].

In Fig. 5 we explore the sensitivity of the theoretical
spectrum (at 90◦) to the assumed plasma conditions. Based
on the reported uncertainties, we consider variations of ±30%
in density and temperature about the nominal values of
5.55 g/cm3 and 13 eV, again assuming normalization B. For
both density and temperature variations we find a rather small
effect on the spectrum because the ion charge Z̄ and the bound
state properties of Be are nearly constant over this range. The
variations in the spectrum are even smaller for the scattering
angle of 25◦ as the bound-free and free-free contributions are
much reduced compared to the elastic peak (not shown). Noise
in the data and uncertainty in the source spectrum (Fig. 3) can
easily mask these small changes. To maximize the utility of
x-ray scattering experiments as tools to extract the temperature
and density of warm dense plasmas, it is therefore essential to
use a source spectrum that is narrow compared to the Compton
shift and that is well characterized for each experimental shot.

Finally, all calculations in Figs. 2 to 5 use the Dirac
exchange potential. We have repeated the calculations with
the Slater exchange potential and find only relatively small
differences. However, due to the ambiguity in the normaliza-
tion of the data, these differences are not significant and we do
not show these results.
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FIG. 5. (Color online) Sensitivity of the calculated x-ray scat-
tering spectrum to variations in density and temperature for the
experiment on warm dense beryllium with θ = 90◦ [4]. The variations
shown correspond to ±30% about the nominal values. The theoretical
curves correspond to normalization B of Fig. 3. In the top panel the
upper line corresponds to the highest density, and the lowest line to
the lowest density. In the bottom panel the upper line corresponds to
the lowest temperature, and the lowest line to the highest temperature.

V. WARM DENSE ALUMINUM

In the experiment of Ref. [6], 17.9-keV x rays were scattered
from a warm dense aluminum target. Spectra were presented
for θ = 69◦ and 111◦ in absolute units and the source spectra
was determined to have a Gaussian shape (325-eV FWHM).
The conditions of the target are reported to be 10 eV and
8.1 g/cm3, corresponding to a threefold compression, while
the average ionization was determined to be Z̄ = 3. Using
the Dirac exchange functional, our model [12] predicts three
bound states for these conditions, the 1s, 2s, and 2p states,
having energies of −1.47 keV, −75.7 eV, and −38.3 eV,
respectively. The average ionization is found to be Z̄ = 3.04,
corresponding to an electron density of n̄0

e = 5.5 × 1023 cm−3.
The k dependence of the elastic feature is shown in Fig. 6. The
ion-ion structure factor Sii(k) as calculated from our model
shows only a small first peak, indicative of a modestly coupled
plasma and is in excellent agreement with a quantum molecular
dynamics simulation for the same conditions. For both angles,
the experimental k value is well within the asymptotic regime
where Sii(k) = 1. On the other hand, the screening density
form factor q(k) is negligible compared to the ion form factor
fI (k). Thus the change in magnitude of the elastic feature
between the two scattering angles is entirely dominated by the
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FIG. 6. (Color online) k dependence of the elastic component
of the structure factor for aluminum at 10 eV and 8.1 g/cm3 as
calculated with the WDM model of Ref. [12]. The dotted vertical
lines correspond the the k values of the experiment [6] at 69◦

(k = 5.44a−1
B ) and 111◦ (k = 7.94a−1

B ). The Sii(k) obtained from
a quantum molecular dynamics calculation [29] is also shown for
comparison. The small cross indicates the change in the position
of the peak (solid curve) that results from replacing Sii(k) from
our model with that of the QMD calculation in the calculation of
the elastic feature. Points with error bars are |fI (k) + q(k)|2Sii(k)
extracted from the experiment of Ref. [6]. For clarity, fI (k), q(k),
and Sii(k) have been scaled as indicated in the legend. The quantities
on the vertical axis are dimensionless.

change in fI (k). The scattering parameter is α = 0.22 at 69◦
and 0.11 at 111◦. We expect the RPA to perform rather well in
this strongly noncollective regime.

In Fig. 7 we show our calculations of the x-ray scattering
spectra compared to the experimental data [6] for both angles,
along with each of the components contributing to the total
spectrum. Since the data are reported in absolute units, we
can compare directly with our calculations after convolving
with the Gaussian profile of the incident x-ray probe beam
without any scaling. In the top panel (θ = 69◦) the agreement
is reasonably good. As expected, the inelastic free-free
component peaks near the position of the Compton edge,
which is down-shifted from the elastic peak by EC = k2/2,
as indicated in the figure. The RPA and BM approximations
for the free-free component are very close to each other under
these conditions, as was found for warm dense beryllium
(Fig. 4). The bound-free contribution also peaks near the
Compton edge in this experiment, with the result that it cannot
be distinguished from the free-free scattering. This free-free
like behavior of the bound-free contribution is explained
by the incident photon energy being much larger than the
binding energy of the electrons, essentially scattering them
as if they were free. A similar calculation of the bound-free
contribution is presented in Ref. [30]. Also shown is the total
spectrum calculated with the Slater exchange potential, which
has a small effect (∼5%) on the peak heights compared to
the calculation with Dirac exchange. This result gives us an
indication of the magnitude and type of effect the exchange
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FIG. 7. (Color online) Comparison of synthetic x-ray scattering
spectra to an experiment on warm dense aluminum [6], assuming
a temperature of 10 eV and density of 8.1 g/cm3 (threefold
compression). The vertical dotted line shows the position of the
Compton edge. The curve labeled “total” uses the Born-Mermin
(BM) calculation of the free-free component. All theoretical curves
shown use the Dirac exchange potential except the solid purple (dark
gray) line, which is the total spectrum obtained when using the Slater
exchange potential. It overlaps the Dirac exchange calculation almost
everywhere.

(and correlation) potential has on x-ray scattering spectra in
WDM experiments.

In contrast to the good agreement with the 69◦ spectrum,
the calculated spectrum and the data differ remarkably for
the scattering angle of 111◦ (Fig. 7, bottom panel). To zeroth
order, both the calculated spectrum and the data show that the
inelastic peak is of similar amplitude to the elastic peak. The
larger Compton shift at this angle clearly separates the elastic
and inelastic features in the model spectrum, resulting in a
double-peaked structure. On the other hand, the data show a
single broad peak whose width is roughly comparable to that
of our calculation but with only about one-third the amplitude.

In the data, the elastic peak is ∼7 times smaller than at 69◦,
while our model predicts a decrease by a factor of 3. This is
significant since no normalization is applied in this comparison
as the data are reported in absolute units. Fortunately, this case
lends itself to a deeper analysis. As shown in Fig. 6, both
spectra correspond to fairly large values of k where our model
predicts that Sii(k) = 1 and q(k) ≈ 0. Thus the model predicts
that the variation in the height of the elastic peak at 17.9 keV
will come solely from the change in fI (k), the form factor
of the bound electrons [Eq. (2)]. We have considered each
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of these contributions to the elastic peak. Our ionic structure
factor for this plasma is in excellent agreement with that from
a quantum molecular dynamics simulation [29] (Fig. 6). The
form factor q(k) represents the cloud of screening electrons,
whose radial distribution around an ion can depend sensitively
on assumptions in the WDM model. The experimental plasma
is fairly degenerate (the Fermi energy is 24.5 eV and T =
10 eV). A simple Yukawa model of screening with a screening
wave vector kscr = 1.19a−1

B [Eq. (5)] confirms that q(k) should
be very small since k � kscr for scattering angles of 69◦ and
111◦, regardless of how the screening is modeled.5 The ion
form factor fI (k) is determined by the wave functions of the
three bound states. We have verified that a nearly identical
fI (k) is obtained from an independent average atom model
(MUZE) [31,32]. A Dirac-Fock-Slater calculation [33] of the
core electron density of an isolated Al3+ ion shows only
minute differences from our fI (k). Having thus checked each
component of the elastic feature, we find that no realistic WDM
model would predict the experimentally observed magnitude
for the elastic feature at 111◦. One mechanism that would
achieve a reduction in the elastic peak is if the source spectrum
was significantly broader than reported or non-Gaussian.

The free-free component is insensitive to the choice of ap-
proximation as both the RPA and the BM approximation give
nearly identical results (Fig. 7). These two scattering angles
correspond to the strongly noncollective regime (α = 0.11 and
0.22) and we expect the RPA to be a good approximation to
See(k,ω) [25]. This experiment is in the limit where k > 2kF

(kF = 1.34 is the Fermi wave vector), where the static structure
factor See(k) = ∫

See(k,ω) dω → 1. We have checked that
the frequency integral of the free-free component changes
little between these two scattering angles, as is confirmed by
Fig. 7. For the bound-free component we have verified that an
independent calculation using the MUZE average atom model
gives nearly identical results.

There seems to be no room in our model to account for
the difference between the modeled and observed spectra at
111◦, particularly considering the good agreement we find with
the 69◦ spectrum. Finally, we have checked the sensitivity of
the spectra to density and temperature variations (±30%) and
found an almost negligible dependence for both angles. This
detailed discussion shows that in this case, no realistic model
of the plasma would give properties that differ much from
those calculated with our model of WDM.

From a theoretical point of view, the discrepancy could
be attributed to the Chihara decomposition of the scattered
spectrum into distinct elastic, bound-free, and free-free con-
tributions [Eq. (2)]. This formalism relies primarily on the
assumption that the bound states are well separated from
the continuum. We found that under these experimental
conditions, the most weakly bound electrons of the Al ion
have a binding energy of |E2p| = 38.3 eV, well above the
temperature of the plasma (10 eV) and the Fermi energy
(24.5 eV). Inspection of the bound electron density profile

5The same reasoning applied to the warm dense Be case of Sec. IV
confirms that q(k) becomes very small where expected and that the
experiment probes k values small enough for the screening model to
matter.

shows that only a very small fraction leaks outside of the
ion sphere. Under these circumstances the Chihara formalism
should be valid.

Figure 6 shows the amplitude of the elastic peak |fI (k) +
q(k)|Sii(k) as a function of the wave vector k. The data
shown are extracted from spectra taken at 13 scattering angles,
after modeling and removing the bound-free and free-free
contributions [Eq. (2)]. For small k values, the latter are
relatively small and the entire scattered line can be attributed
to the elastic peak. Experimentally, a sharp maximum of 106 at
k = 2.1a−1

B is found while our model predicts a peak of 65 at
k = 2.0a−1

B . Apart from the two points near the peak our model
generally agrees well with the values extracted from the data.
The small black cross in the figure indicates the maximum peak
height that would occur if Sii(k) from the QMD simulation [29]
was used instead of that calculated from our model. As can
be seen from the figure, the difference is small, with the peak
height changing to 68, insufficient to account for the large
difference seen.

In Ref. [6], the larger peak was reproduced with a model
including ion-ion correlations described with a combination of
a Yukawa potential and a short-range repulsion between ions
due to bound electrons; the latter being essential to match the
height of the peak. On the other hand, our model of WDM,
which also accounts for ion-ion correlations and strongly
nonlinear screening based on the electronic wave functions
and self-consistently generates the ion-ion potential, predicts
a maximum in the elastic peak that is much lower. The fact that
our Sii(k) agrees very well with a QMD simulation (Fig. 6)
for this Al plasma shows that our ion-ion potential describes
the system well without introducing an ad hoc short-range
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FIG. 8. (Color online) Comparison of ion-ion potentials used in
calculations of the structure factor Sii(k) for warm dense Al at 10 eV
and 8.1 g/cm3. For clarity, the product rV (r) is shown. The potential
calculated with a self-consistent model of WDM [12,13] [Vii(r),
black] is affected by the shell structure of the ion and is more repulsive
than a Yukawa potential with screening wave vector kscr = 1.07a−1

B

[18,21] [V Y (r), green (light gray)]. The dashed curve shows the pair
distribution function g(r) computed with the former potential. The
ion sphere radius is indicated by the vertical dotted line. The two
potentials are substantially different in a range of radii where g(r) is
not small.
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repulsion. In fact, the orthogonality of the electronic states
obtained by solving the Schrödinger equation [12] tends to
push the free electrons out of the core of bound electrons and
thus results in weaker screening than the Yukawa screening
of a point ion of the same charge. The Yukawa potential is
considerably more attractive than our ion-ion potential in a
range of separations of significant correlations in the fluid
(r ∼ 2 − 4aB). Figure 8 shows that a repulsive term would
have to be added to a Yukawa potential to reproduce the pair
distribution function and structure factor of a QMD simulation
[6,34]. Such significant divergences between models of WDM
can be resolved partially with comparisons with ab initio
simulations that rely on fewer approximations. However, this
cannot replace well-controlled experiments with parameters
chosen to highlight the relevant physics.

VI. PREDICTION FOR A WARM DENSE BERYLLIUM
EXPERIMENT

In this spirit, we consider a hypothetical experiment with
beryllium that combines the WDM conditions of Ref. [4] with
the x-ray probe used in the cold Be experiment [7]. The latter
is mainly characterized by a very high intensity beam with a
very narrow spectral distribution and a long duration that lead
to high signal-to-noise data and high spectral resolution. In
Fig. 9 we show our prediction for the spectra from a Be target
at 13 eV and 5.55 g/cm3 for the set of angles used in Ref. [7].
For these conditions Z̄ = 2.01. This can be compared directly
to Fig. 1. The differences are due only to temperature and
density effects as predicted by our model. We have omitted
the elastic peak from the spectrum in Fig. 9, which would
appear as a very narrow feature at ω = 0.

Compared to the cold Be experiment, the peak of the
spectrum is reduced by a factor of ∼2/3 and the bound-
free edge is no longer sharp. The softening of the bound-
free edge is due to the smearing of the Fermi distribution for
the continuum electrons that occurs at higher temperatures and
is therefore a consequence of accounting for the occupation
of the final state in the bound-free calculation. The free-free
component is also broadened and, consequently, of lower
amplitude to give the same See(k) = ∫

See(k,ω) dω. Again, this
is a result of the broadening of the Fermi edge or, equivalently,
of the broader momentum distribution of electrons at finite
T for a given electron density. The broadening occurs over
a range of �ω ∼ kT , typically of the order of 10 eV in
WDM experiments. This explains to some extent why the RPA
appears to be an accurate description of the free-free feature
in WDM experiments but not in the cold Be experiment.
For the cold Be experiment [7] (Fig. 1) is was found that
the RPA was too large in magnitude at its peak and too
narrow at its base. Broadening due to temperature corrects
this inadequacy somewhat. Furthermore, the broad source
spectra typically used in WDM x-ray scattering experiments
[4,6] smooths the spectrum over ∼102 eV and further tends
to mask any shortcomings of the RPA. Our calculation of
the free-free contribution with the BM approximation is
essentially identical to the RPA result in this example. For
completeness we also show in Fig. 9 the result using the Slater
exchange potential to model the electrons. As we found for the
cold Be experiment, the result is mostly indistinguishable from
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FIG. 9. (Color online) Theoretical spectra for warm dense beryl-
lium with the same conditions as in the warm dense Be experiment
(5.55 g/cm3 and 13 eV; Figs. 3 and 4) and the same k vectors and
x-ray probe profile as for the experiment on cold Be [7] (Fig. 1). The
curves are shown for calculations with the Dirac exchange functional.
The solid cyan (light gray) line is the result using Slater exchange
and is mostly indistinguishable from the Dirac exchange calculation
except near the bound-free threshold. For ease of comparison, we
show this figure with the same frequency axis as in Fig. 1, which is
reversed from that of Figs. 3–5 and 4.

the calculation with Dirac exchange except near the bound-free
edge and then only for the smaller k values.

VII. FEATURES IN THE BOUND-FREE SPECTRUM

In the Be case discussed in the previous section (Fig. 9), the
bound-free contribution to the scattered spectrum is smooth.
In higher Z elements, the bound-free term is the sum of
contributions from multiple bound states and can show several
bound-free edges. Average atom models predict that inelastic
scattering off of bound electrons can also produce sharp peaks
for transitions to resonant continuum states [35]. Our WDM
model predicts multiple bound-free edges and resonant peaks
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FIG. 10. (Color online) Theoretical bound-free and free-free
contributions to the x-ray scattering spectrum of warm dense titanium
at 5 eV and 4.51 g/cm3. The probe beam has an energy of ω0 =
4.750 keV and the angle is 130◦. The spectrum is not convolved with
a source spectrum. The black vertical dotted lines mark the energies of
the 3s and 3p bound states. The green (light gray) vertical dotted lines
mark these bound state energies plus the energy of the 3d resonant
state (11.7 eV). Note that the frequency axis is reversed, as in Figs. 1
and 9.

in x-ray scattering spectra as well. This is expected since
we apply the same formalism to calculate the bound-free
scattering as Ref. [35] and our WDM model naturally accounts
for all bounds states and continuum resonances.

Figure 10 shows an x-ray scattering spectrum for titanium
at 5 eV and 4.51 g/cm3 (solid density), with a probe beam
of 4.750 keV and a scattering angle of 130◦ (see Ref. [35]
for a similar calculation). The bound-free spectrum contains
contributions due to photo-ionization of the 3s and 3p bound
states, with binding energies of −43.8 eV and −21.4 eV,
respectively. The most notable features are due to transitions
from these bound states to a 3d continuum resonance, located
at a positive energy ∼11.7 eV. Because average atom models
impose spherical symmetry, they predict resonances that are
too strong and narrow. In a disordered system such as a plasma,
resonances are still present but are broadened significantly
[36]. Nonetheless, Fig. 10 shows that it is possible to probe the
structure of resonant continuum states in WDM with x-ray
scattering experiments and test model predictions that can
affect transport properties. As can be seen in the figure, such
measurement requires a probe beam with a spectral distribution
that is narrow enough to reveal the structure in the spectrum of
the order of 5 eV. This is especially important since the elastic
peak at ω1 − ω0 = 0 is very strong and its broadening into the
20–70 eV range would overwhelm the bound-free signal.

VIII. CONCLUSIONS

We have presented calculations of x-ray scattering spectra
for WDM using the Chihara formalism for scattering [15] and
a new model for the properties of dense plasmas [12]. The
model has no adjustable parameters and unique predictions
of scattering spectra are obtained given the element’s nuclear
charge and atomic mass, the mass density and temperature,

and experimental parameters. Variants of the model can be
produced with different choices of approximations such as the
exchange and correlation potential. This model of WDM has
been applied successfully to the calculation of pair distribution
functions for elements from hydrogen to tungsten over a wide
range of conditions [12,13,37]. The Chihara formalism is
implemented by using quantities directly calculated from our
WDM model for the elastic feature, the approach of Ref. [35]
for the bound-free contribution, which uses the bound and
continuum wave functions from our WDM model, and either
the RPA or the Born-Mermin approximation for the free-free
component.

A comparison of the modeled x-ray scattering spectra to
a series of high-resolution, high-signal-to-noise-ratio experi-
mental spectra from a room-temperature, solid beryllium target
reveals systematic deviations of moderate magnitude that can
be attributed to approximations in our model. Specifically, one
limitation is the use of the DFT to compute electronic wave
functions, which underestimates the binding energies, and the
other is the RPA, which approximates the free-free scattering
reasonably well in the regime of noncollective scattering
but not as successfully as more advanced, zero-temperature
theories [7]. This comparison provides a quantification of the
errors introduced by the approximations in the WDM model
and by the model for the x-ray scattering. The generally good
agreement with this exacting data validates our approach and
justifies its application to x-ray scattering spectra of WDM
targets. Compared to the cold Be experiment conducted under
ambient conditions, WDM experiments are technically quite
challenging and the resulting spectra have lower signal-to-
noise ratios and lower spectral resolution and are not as well
controlled.

We analyzed the x-ray scattering spectra acquired in two
WDM experiments. For the Be experiment [4], we found
good agreement with the spectra obtained at two scattering
angles. However, there is some inconsistency between the 90◦
spectrum and the probe spectrum, resulting in an ambiguity in
the analysis that is significant. The sensitivity of the spectrum
to variations in density and temperature of ±30% is small,
comparable to the noise level, and easily masked by the
uncertainty in the spectral distribution of the probe x rays.
We are unable to match the long-range tail of the 90◦ spectrum
that arises from the bound-free contribution, in contrast to the
good agreement found with the cold Be experiment for this
feature.

On the other hand, the free-free component of the spectra
agrees well with the experiments at warm dense conditions
while we found systematic deviations of the RPA with the
cold Be data. However, shortcomings in the RPA could be
masked by the broad source spectrum used in the experiment
[4,6] which tends to correct for the deviations from the cold Be
data. Moreover, this apparent validity of the RPA is weakened
by other points of disagreements with the data.

For the warm dense aluminum experiment [6] we find good
agreement with the data at one scattering angle (69◦) and strong
disagreement with the other (111◦). In particular, the elastic
peak and the sum of the bound-free and free-free contributions
produce a strong double-peaked spectrum while only a broad,
flat feature is observed. We have argued that this disagreement
is difficult to understand from a theoretical perspective as our
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result is supported by several independent checks and simple
physics arguments.

Finally, we have isolated the effects of warm dense target
conditions by comparing the theoretical spectra for the cold
Be experiment to that of warm dense Be for the same x-ray
probe. Temperature effects reveal themselves primarily via a
blurring of the Fermi edge, resulting in a smearing out of the
bound-free and free-free features which is most noticeable
near the bound-free threshold.

WDM is widely acknowledged as being challenging to
model and much theoretical development is needed to fill
large gaps in our understanding of the physics of WDM
and to reliably model natural and laboratory systems where
WDM occurs [9]. Experiments have a crucial role to play in
evaluating competing models and in measuring the properties
of WDM directly. X-ray scattering arises from a host of
atomic-scale and collective phenomena. Such experiments
have the potential to probe many microscopic features of warm
dense plasmas, such as the number and energies of bound
states; continuum resonances; the response of a correlated,
partially degenerate electron fluid (beyond the RPA); collective
phenomena; electron screening in strongly nonlinear regimes;
ion-ion correlations; and pressure ionization. These exciting
prospects as well as the ability to discriminate between models
of WDM [8,16,18,21,38] and advances in the theory of x-ray
scattering [15] in WDM are not yet realized experimentally.

The cold Be experiment and its modeling [7,8,26], as well
as the synthetic spectra presented here show that such
investigations of WDM will be enabled by data with much
higher signal-to-noise and higher spectral resolution than have
been achieved so far for WDM targets. We have also found that
well-characterized probe beams are essential for a meaningful
analysis of x-ray scattering spectra. The bright, narrow x rays
available on modern XFELs and even the narrow Heβ lines that
accompany Heα emission from laser plasmas could provide
much cleaner data that would enable more stringent tests
of theory. Finally, models of WDM and the theory of x-ray
scattering in dense plasmas are constrained most effectively
by experiments where parameters such as the temperature and
density are measured independently from the spectrum.
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