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We derive rigorous upper bounds on the transport 〈XY 〉 where 〈·〉 indicates time average, for solutions 
of the Lorenz equations without assuming statistical stationarity. The bounds are saturated by nontrivial 
steady (albeit often unstable) states, and hence they are sharp. Moreover, using an optimal control 
formulation we prove that no other flow protocol of the same strength, i.e., no other function of time 
X(t) driving the Y (t) and Z(t) variables while satisfying the basic balance 〈X2〉 = 〈XY 〉, produces higher 
transport.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Few mathematical models have had as profound an influence 
on the development of nonlinear science over the last half century 
as the Lorenz equations [1]

Ẋ = −σ X + σ Y (1)

Ẏ = r X − Y − X Z (2)

Ż = XY − b Z . (3)

This system arises as a severe modal truncation of Rayleigh’s 1916 
model of two-dimensional buoyancy-driven flow between paral-
lel isothermal plates with stress-free boundaries [2]. In modern 
nondimensional variables Rayleigh’s model is the Boussinesq ap-
proximation to the Navier–Stokes equations,

ω̇ + J (ψ,ω) = σ�ω + σ Raθx (4)

θ̇ + J (ψ, θ) = �θ + ψx (5)

where the J (α, β) = αxβy − αyβx , ω(x, y, t) = �ψ(x, y, t) is the 
vorticity associated with steam function ψ , and θ(x, y, t) is the 
deviation of temperature from the steady linear conduction pro-
file. The boundary conditions are ψ = ψyy = θ = 0 at y = 0
and y = 1 with everything L-periodic in x. The dimensionless 

* Corresponding author.
E-mail addresses: sandre@umich.edu (A.N. Souza), doering@umich.edu

(C.R. Doering).
http://dx.doi.org/10.1016/j.physleta.2014.10.050
0375-9601/© 2014 Elsevier B.V. All rights reserved.
parameters of the problem are the Prandtl number σ , the ra-
tio of diffusion of momentum to diffusion of heat in the fluid, 
and the Rayleigh number Ra, a ratio of the driving due to the 
temperature-drop-induced buoyancy force to the damping diffu-
sion coefficients. Rayleigh proved that the steady conduction solu-
tion ψ = 0 = θ is linearly unstable to perturbations ∼ eikx sinπ y
when Ra > Rac(k) = (k2 + π2)3/k2. The smallest critical Rayleigh 
number, 27

4 π4, is achieved in domains of width L = integer × 2
√

2.
Lorenz’s variables are modal amplitudes in the Galerkin trunca-

tion approximation

ψ(x, y, t) =
√

2

π

(
k2 + π2

k

)
X(t) sin kx sinπ y

θ(x, y, t) =
√

2

πr
Y (t) cos kx sinπ y − Z(t)

1

πr
sin 2π y (6)

where the ‘reduced’ Rayleigh number r = Ra/Rac and the domain-

shape parameter b = 4π2

k2+π2 . The time variable is also rescaled ac-

cording to t → (k2 +π2)t . Solutions of Rayleigh’s continuum model 
are reasonably well approximated by Lorenz’s truncation only near 
the primary bifurcation, i.e., for r =O(1), but the differential equa-
tions are nevertheless of theoretical (and historical) interest even 
for r � 1 due to the appearance of chaos in the solutions.

The bulk heat transport is gauged by the Nusselt number Nu, 
the ratio of the sum of the total (conductive plus convective) heat 
flux to the flow-independent conductive flux. The convective heat 
flux is proportional to the correlation between the vertical velocity 
ψx and the temperature θ , which reduces to Nu − 1 = k2+π2

2 〈XY 〉

2π r
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for Lorenz’s variables where 〈·〉 indicates the infinite time aver-
age (when the infinite time limit of long-but-finite time averages 
exist). The Nusselt number is a key indicator of the nonlinear re-
sponse of the system to the driving whose strength is measured 
by the Rayleigh number (Ra or r). The classical linear and non-
linear stability results for both Rayleigh’s and Lorenz’s models are 
that the pure conduction state with Nu = 1, respectively ψ = 0 = θ

and X = Y = Z = 0, is absolutely stable for Ra < Rac ≡ r < 1 and 
linearly unstable for Ra > Rac ≡ r > 1.

It is of both fundamental theoretical interest and practical im-
portance for applications to know the dependence of Nu on Ra, σ , 
and L. The high Rayleigh number Nu–Ra relationship characteriz-
ing turbulent convective heat transport is of interest for theory and 
experiment [3] and has remained the focus of mathematical analy-
sis for more than half a century [4–6]. For Rayleigh’s original 1916 
model described above, for example, the most recent rigorous re-
sult is the upper bound Nu < .29 Ra5/12 uniformly in σ and L for 
Ra > 27

4 π4 [7].
The study of rigorous bounds on Nu for solutions of the Lorenz 

equations has received less attention with the notable exceptions 
of Malkus [8], Knobloch [9], and Foias et al. [10] who found that 
the steady state maximizes transport among statistically steady so-
lutions and for invariant measures, and Pétrélis and Pétrélis [11]

who proved that 〈XY 〉 ≤ b (r+σ−√
σ)2

r+σ for any solution. In this let-
ter we present two alternative approaches to establish the im-
proved estimate 〈XY 〉 ≤ b(r − 1), uniformly in σ for r > 1, when 
the long-time limit exists. In case long-time averages do not con-
verge, our result is that the limit supremum of finite-time aver-
ages satisfies the bound. Most significantly this upper bound is 
sharp: it is saturated by the exact steady solutions (Xs, Ys, Zs) =
(±√

b(r − 1), ±√
b(r − 1), r − 1).

In the next section we employ the so-called “background” 
method, originally contrived for estimating bulk averaged trans-
port in solutions of the Navier–Stokes and related equations [5], 
to prove the new upper bound. The subsequent Section 3 intro-
duces and develops a novel optimal control strategy for upper 
bound analysis to reproduce the result: we relax the momentum 
equation (1) and treat X(t) as a control variable constrained only 
by 〈X2〉 = Pe2 to drive the temperature variables via (2) and (3). 
We prove in this setting that 〈XY 〉 ≤ rb Pe2/(b + Pe2). Then auxil-
iary relation Pe2 = 〈XY 〉, from the neglected Eq. (1), can be used 
to connect the optimal transport with solutions of the Lorenz 
equations, yielding the same bound as obtained from the back-
ground analysis. This shows that no time-dependent stirring pro-
tocol, whether it solves the first Lorenz equation (1) or not, trans-
ports more than the steady flow. We also show, in a certain precise 
sense, that the steady stirring strategy is the unique maximizer.

2. Background analysis

We are interested in the r > 1 parameter regime. It is conve-
nient to rewrite the Lorenz equations as

ẋ = −σ x + σ ry (7)

ẏ = x − y − xz (8)

ż = xy − bz (9)

where X = x, Y = ry and Z = rz and the Nusselt number in terms 
of the correlation of x(t) and y(t) is Nu = 1 + k2+π2

2π2 〈xy〉. (Note: 
do not confuse these lower case x and y variables with the spatial 
coordinates in Rayleigh’s model discussed in the introduction.)

It is well known that, after possible initial transients, solutions 
of the Lorenz equations are uniformly bounded in time [12–17]. 
For example
1

2

d

dt

[
1

r2
x2 + y2 +

(
z − 1 − σ

r

)2]

= − σ

r2
x2 − y2 − bz2 + b

(
1 + σ

r

)
z (10)

so that

lim
t→∞

[
1

r2
x2 + y2 +

(
z − 1 − σ

r

)2]

≤

⎧⎪⎪⎨
⎪⎪⎩

(1 + σ
r )2 if min{1,σ , b

2 } = b
2

b2(1+ σ
r )2

4(b−1)
if min{1,σ , b

2 } = 1
b2(1+ σ

r )2

4σ (b−σ )
if min{1,σ , b

2 } = σ .

(11)

Thus for differentiable functions F : R3 → R , long time averages of 
time derivatives satisfy

〈
Ḟ (x, y, z)

〉
T ≡ T −1

T∫
0

[
d

dt
F
(
x(t), y(t), z(t)

)]
dt

= O
(
T −1) as T → ∞. (12)

Hence, averaging time derivatives of 1
2 x2, 1

2 (y2 + z2), and −z we 
deduce the balances

0 = −〈
x2〉

T + r〈xy〉T +O
(
T −1) (13)

0 = −〈
y2〉

T − b
〈
z2〉

T + 〈xy〉T +O
(
T −1) (14)

0 = −〈xy〉T + b〈z〉T +O
(
T −1). (15)

Now write z(t) = z0 + ς(t) where, anticipating the result, we 
choose the time-independent “background” component z0 = r−1

r . 
Substituting this into (14) and (15) yields

0 = −〈
y2〉

T − b
〈
ς2〉

T − 2bz0〈ς〉T − bz2
0 + 〈xy〉T +O

(
T −1) (16)

0 = bz0 + b〈ς〉T − 〈xy〉T +O
(
T −1). (17)

Then the combination (16) + 2z0 × (17) is

0 = −〈
y2〉

T − b
〈
ς2〉

T + bz2
0 + (1 − 2z0)〈xy〉T +O

(
T −1) (18)

so that, adding zero cleverly disguised as 1
r × (13) + r × (18) to 

(r − 1)〈xy〉T , we have

(r − 1)〈xy〉T = rbz2
0 −

〈(
x√
r

− √
r y

)2

+ rbς2
〉

T
+O

(
T −1)

≤ rbz2
0 +O

(
T −1) = b

(r − 1)2

r
+O

(
T −1). (19)

This, in turn, implies

lim
T →∞〈XY 〉T = lim

T →∞ r〈xy〉T ≤ b(r − 1) = XsYs. (20)

Therefore, when the long time limit exists, 〈XY 〉 = limT →∞〈XY 〉T ≤
b(r − 1) as advertised.

As a corollary it is interesting to note that the proof also shows 
that any sustained time dependence in the solutions, whether pe-
riodic or chaotic, strictly lowers the transport. Indeed, the first 
Lorenz equation (1) and the penultimate expression in (19) imply

〈XY 〉T ≤ b(r − 1) − 1

σ 2(r − 1)

〈
Ẋ2〉

T +O
(
T −1) (21)

so that 〈XY 〉 is strictly less than XsYs when 〈 Ẋ2〉 �= 0.
This is illustrated in Fig. 1 where we plot the upper limit real-

ized by the non-trivial steady state solutions along with measure-
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Fig. 1. Long time averaged heat transport for solutions of the Lorenz equations. 
Dashed line: upper bound on 〈XY 〉 derived by Pétrélis and Pétrélis [11]. Solid line: 
improved upper bound (20) corresponding to the nontrivial fixed points that exist 
when r > 1. Discrete data: direct numerical simulation results for parameter values 
σ = 10 and b = 8

3 .

ments of 〈XY 〉 from direct numerical solutions of the Lorenz equa-
tions. For these particular parameter values (σ = 10 and b = 8

3 ) 
the non-zero fixed points are stable for 1 < r ≤ 470

19 = 24.73 . . . [1]
while chaotic and periodic solutions—that necessarily transporting 
less heat—are robustly realized for higher r.

3. Optimal control analysis

The same upper bound results from an alternative analysis 
that yields some insight into the dynamics of optimal transport 
in the Lorenz equations. This approach was recently applied to 
other Rayleigh–Bénard convection problems with interesting out-
comes [18]. The idea is to consider the flow as a control variable 
driving the temperature field via the advection diffusion equation 
and ask the following question: What is the maximal transport 
that can be realized among all flows subject to a suitable inten-
sity constraint? The relevant constraint for Rayleigh’s model is the 
value of the space–time averaged enstrophy (the mean squared 
vorticity 〈ω2〉, where 〈·〉 includes the spatial average in this con-
text), the magnitude of which becomes a parameter in the con-
trol problem. By revisiting the neglected momentum equation we 
connect the flow intensity parameter with the transport and the 
original parameter(s): for Rayleigh’s model the connection is es-
tablished by multiplying (4) by ψ and averaging over space and 
time to see that 〈ω2〉 = Ra〈ψxθ〉 = Ra(Nu − 1).

For the Lorenz equations we neglect dynamical equation (1)
and treat X(t) as a control variable in (2) and (3) for Y (t) and Z(t). 
The amplitude of X is subject to the constraint 〈X2〉 = Pe2 < ∞
where the Péclet number Pe parameterizes the strength of the 
stirring. We seek to determine the optimal X(t) that maximize 
the convective transport proportional to the correlation 〈XY 〉. Af-
terwards, to connect the Péclet number to the Rayleigh–Bénard 
problem, we impose the relation Pe2 = 2π2r

k2+π2 (Nu − 1) satisfied 
by natural buoyancy driven flow. The bound on Nu thus obtained, 
maximizing over a larger class of functions X(t) than just those 
generated by (1), is also a bound for solutions of the full Lorenz 
system.

To carry this out it is again convenient to rewrite (2) and (3)
as the inhomogeneous and (generally) non-autonomous linear dy-
namical system

d

dt

(
y
z

)
=

( −1 −x
x −b

)(
y
z

)
+

(
x
0

)
(22)

where y(t) = Y (t)/r, z(t) = Z(t)/r, and x(t) = X(t) is now a locally 
square integrable function of time subject only to the mean con-
straint 〈x2〉 = Pe2 (strictly speaking we require 〈x2〉T = Pe2 + o(1)

as T → ∞). The optimal control problem is a constrained opti-
mization problem: we seek to determine the maximum possible 
value, over all admissible functions x(t), of the long-time average 
〈xy〉 where y(t) and z(t) solve (22).

According to the calculus of variations the mother functional 
that we differentiate to derive the Euler–Lagrange equations satis-
fied by the optimizers is

F =
〈
xy − η( ẏ − x + y + xz) + ζ(ż − xy + bz) + μ

2

(
x2 − Pe2)〉

(23)

where η(t) and ζ(t) are Lagrange multipliers enforcing (22) and 
the real variable μ is the Lagrange multiplier enforcing the in-
tensity constraint. Ignoring initial (and final) conditions for the 
moment, the Euler–Lagrange equations obtained by setting δF/δy, 
δF/δz, and ∂F/∂μ to zero are, respectively,

d

dt

(
η
ζ

)
=

(
1 x

−x b

)(
η
ζ

)
−

(
x
0

)
(24)

and

μx(t) = y(t)
(
1 − ζ(t)

) + η(t)
(
1 − z(t)

)
(25)

that prescribes the optimal stirring strategy x(t) in terms of the dy-
namical variables and the Lagrange multipliers, and the amplitude 
constraint 〈x2〉 = Pe2. Note that for a given control x(t) the linear 
inhomogeneous system (24) for the ‘adjoint’ functions η and ζ is 
precisely the time reversed dynamics of (22).1 Operationally one 
chooses a value of μ, solves the four dimensional nonlinear sys-
tem consisting of (22) and (24) coupled together by (25), and then 
evaluates both the sought-after extreme value of 〈xy〉 the original 
parameter of the problem, the Péclet number Pe.

The time independent solution of the optimal control problem 
is

xs = ±Pe, ys = ηs = ± b Pe

Pe2 + b
, zs = ζs = Pe2

Pe2 + b
(26)

yielding an extreme transport value

xs ys = b Pe2

Pe2 + b
. (27)

The Lagrange multiplier μ = 2b2/(Pe2 + b)2 ∈ (0, 2] for these solu-
tions. Recalling that the Nusselt number in terms of the correlation 
of x(t) and y(t) is Nu = 1 + k2+π2

2π2 〈xy〉 and, from the abandoned 
‘momentum’ Lorenz equation (1) the reduced Rayleigh number r

is related to Pe and Nu via Pe2 = 2π2r
k2+π2 (Nu − 1), we may elim-

inate the Péclet number and express this steady stirring extreme 
transport

xs ys = b

(
1 − 1

r

)
⇐⇒ XsYs = rxs ys = b(r − 1), (28)

precisely the same transport in fixed-points of the Lorenz equa-
tions that we proved in the previous section is an upper bound for 
all solutions of the Lorenz equations.

In the two following subsections we will first display and dis-
cuss some numerically computed time-periodic solutions of the 

1 If we were interested in maximizing the time average of x(t)y(t) over a finite 
time interval (0, T ) given initial conditions y(0) and z(0), the adjoint dynamics in 
(24) would come equipped with homogeneous final conditions η(T ) = 0 = ζ(T ), 
following from the integration by parts involved with evaluating the functional 
derivatives, suitable to specify the time-reversed evolution.
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Fig. 2. (Color online.) The time dependence of optimal τ = 2π periodic stir-
ring protocols for several values of the Péclet number and b = 8

3 . Long dashed 
line: Pe = 0.69; short dashed line: Pe = 1.71; dotted line Pe = 4.50; solid curve: 
Pe = 8.96.

optimal Euler–Lagrange equations, and then prove (a) that the 
steady solution of the Euler–Lagrange equations realizes the ab-
solute upper bound and (b) that any non-constant time-periodic 
control transports strictly less. This establishes the fact that steady 
stirring is the unique global maximizer among the infinitely many 
time-periodic solutions of the Euler–Lagrange equations.

3.1. Time periodic stirring protocols

We numerically constructed some time-periodic solutions of 
the optimal control problem defined by (22), (24), and (25) by 
computationally continuing analytical time-periodic solutions from 
the linearized problem at small Pe into the strongly nonlinear 
regime. In the limit Pe → 0 the linearized Euler–Lagrange equa-
tions are

ẏ = −y + x (29)

ż = −bz (30)

η̇ = η − x (31)

ζ̇ = bζ (32)

μx = y + η. (33)

Let τ = 2π
ω denote the period of the sought-after solutions. Then 

z(t) = 0 = ζ(t) and, requiring without loss of generality that 
y(t) = η(τ − t) to set the phase,

y(t) =
√

2 Pe

1 + ω2
(cosωt + ω sinωt) (34)

η(t) =
√

2 Pe

1 + ω2
(cosωt − ω sinωt) (35)

where the Lagrange multiplier μ = 2
1+ω2 , the optimal control is 

x(t) = √
2 Pe cosωt , and the transport is 〈xy〉 = Pe2/(1 + ω2). To 

computationally search for τ -periodic solutions of (22), (24), and 
(25) we first truncate the Fourier series expansion of the full non-
linear system and solve the resulting system of algebraic equations 
via Newton’s method continuing from small values of Pe using the 
linearized solutions as the initial guess.

Fig. 2 displays τ = 2π periodic solutions for the control x(t) for 
several values of the Péclet number. For Pe > O(1) it is evident 
that x(t) is ‘attempting’ to take on the steady stirring value xs =
Pe but is frustrated, forced to switch by the mandated periodic 
behavior.
Fig. 3. (Color online.) Solid line: absolute upper bound (53) on the long time av-
eraged transport vs. Péclet number, corresponding to steady stirring, for parameter 
value b = 8

3 . Dashed line: transport from numerically computed periodic solution of 
the optimal Euler–Lagrange equations for period τ = 2π (ω = 1), which is observed 
to lie strictly below absolute upper bound from the steady solutions of the optimal 
Euler–Lagrange equations.

Fig. 3 is a plot of the absolute upper bound for the transport, 
b Pe2/(b + Pe2), and the transport from numerically computed pe-
riodic solutions of the optimal Euler–Lagrange equations for period 
τ = 2π . The time dependent solution produces strictly less trans-
port than steady stirring of the same averaged intensity, as was the 
case for all periods that we sampled. This suggests that steady stir-
ring is actually the unique global optimizer—at least among time-
periodic stirring protocols—and in the next subsection we show 
that this is so.

3.2. Analysis and bounds on transport by arbitrary stirring

Given a general stirring protocol x(t) defined over a semi-
infinite interval—without loss of generality (0, ∞)—it is evident 
that in the long run y(t) and z(t), and hence also the largest 
possible long time averaged transport limT →∞〈xy〉T , become in-
dependent of the initial data y(0) and z(0). Indeed, if both y(t)
and z(t) and ỹ(t) and z̃(t) satisfy (22) with the same x(t) albeit 
with different initial conditions, then the differences �y = y − ỹ
and �z = z − z̃ satisfy the homogeneous linear system

d

dt

(
�y
�z

)
=

( −1 −x
x −b

)(
�y
�z

)
(36)

so that

d

dt

1

2

(
(�y)2 + (�z)2) = −(�y)2 − b(�z)2 (37)

ensuring that the difference |�y(t)| ≤ ce−αt for some finite non-
negative c depending on �y(0) and �z(0) and α = min{1, b} > 0. 
Then the Cauchy–Schwarz inequality guarantees

∣∣〈x�y〉T
∣∣ ≤ 〈

x2〉1/2
T

(
T −1

T∫
0

[
�y(t)

]2
dt

)1/2

≤ (
Pe + o(1)

) × c√
2αT T →∞−−−−→ 0. (38)

That being said, we do not know how to solve the Euler–Lagrange 
equations, or how to prove the existence of solutions in the most 
general setting. We also do not know that the T → ∞ limit of 
〈xy〉T exists for locally square integrable x(t) for which the T → ∞
limit of 〈x2〉T does exist.

Nevertheless we can be certain that 〈xy〉T is bounded uniformly 
as T → ∞ so that the limit supremum is finite and it always 
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makes sense to seek an upper estimate applicable for all possi-
ble values of the long time average. To see this observe that y(t)
and z(t) are bounded uniformly in time, independent of the stir-
ring function x(t). Indeed [14],

d

dt

1

2

(
y2 + (z − 1)2) = −y2 − bz2 + bz (39)

implying

lim
t→∞

[
y2 + (z − 1)2] ≤

{
1 if 0 < b ≤ 2

b2

4(b−1)
if b ≥ 2.

(40)

Cauchy–Schwarz thus guarantees

lim
T →∞〈xy〉T ≤ Pe ×

{
1 if 0 < b ≤ 2

b
2
√

b−1
if b ≥ 2.

(41)

But a much lower a priori estimate on the transport, one that is 
uniform in Pe as Pe → ∞, is also easily established:

d

dt

1

2

(
y2 + z2) = −y2 − bz2 + xy (42)

so that

〈xy〉T = 〈
y2 + bz2〉

T + y(T )2 + bz(T )2 − y(0)2 − bz(0)2

2T
. (43)

In view of the Pe-independent time asymptotic limits on |y| and 
|z| in (40), we conclude that 〈xy〉T possesses a Pe-independent up-
per bound.

To determine the absolute—and, as will be seen, sharp—upper 
limit start with the differential equation for z(t) in (22) to infer

〈xy〉T = b〈z〉T +O
(
T −1). (44)

Then, as in the background analysis, let z(t) = z0 + ς(t), rewrite 
(43) and 2z0× (44) as

0 = −〈
y2 + bς2〉

T − 2bz0〈ς〉T − bz2
0 + 〈xy〉T +O

(
T −1) (45)

0 = −2z0〈xy〉T + 2bz2
0 + 2bz0〈ς〉T +O

(
T −1) (46)

and recall that because the infinite time average 〈x2〉 exists,

0 = 1 − 1

Pe2

〈
x2〉

T + o(1). (47)

Define

a = b Pe

b + Pe2
(48)

and add 0 in the form of (45) + (46) +a2 × (47) to 〈xy〉T to deduce

〈xy〉T = bz2
0 + a2 −

〈
a2

Pe2
x2 + y2 − 2(1 − z0)xy + bς2

〉
T

+ o(1).

(49)

The quadratic form on the right hand side above is non-negative 
when

a2

Pe2
− (1 − z0)

2 ≥ 0 (50)

which is guaranteed by the choice

z0 = Pe2

b + Pe2
. (51)

Then

〈xy〉T ≤ bz2
0 + a2 + o(1) = b Pe2

2
+ o(1) (52)
b + Pe
and we have proven the global upper bound

lim
T →∞〈xy〉T ≤ b Pe2

b + Pe2
. (53)

Therefore, when the long time limit exists, transport by any 
protocol x(t) satisfies 〈xy〉 ≤ b Pe2/(b + Pe2). This corresponds pre-
cisely to the extreme value (27) obtained from the steady solution 
(26) of the Euler–Lagrange equations for the optimal control prob-
lem. Then, utilizing the relation Pe2 = r〈xy〉 to reintroduce the 
reduced Rayleigh number r, we conclude that 〈xy〉 ≤ b(1 − 1

r ) even 
when x(t) does not satisfy the first Lorenz equation.

The analysis above is also sufficient to show that steady control 
is the unique global optimizer among the class of periodic pro-
tocols. To see this, first note that when x(t) = xτ (t) is τ -periodic 
both y(t) and z(t) converge to unique τ -periodic functions yτ (t)
and zτ (t).2 This means that the long time average of any contin-
uous function of x, y, and z exists and is equal to the average of 
the function of xτ (t), yτ (t), and zτ (t) over just one period. In the 
periodic case (49) with the choice (51) averaged over a period be-
comes an equality:

〈xτ yτ 〉τ = b Pe2

b + Pe2
−

〈
a

Pe

(√
b

b + Pe2
xτ −

√
b + Pe2

b
yτ

)2

+ bς2
τ

〉
τ

. (54)

Thus 〈xτ yτ 〉τ = b Pe2

b+Pe2 if and only if

xτ (t) = b + Pe2

b
yτ (t) and

ςτ ≡ 0 ⇔ zτ (t) = z0 = Pe2/
(
b + Pe2) = constant. (55)

But then the differential equation for yτ (t) is

ẏτ = −yτ − xτ zτ + xτ

= −yτ − b + Pe2

b
× yτ × Pe2

b + Pe2
+ b + Pe2

b
yτ ≡ 0 (56)

so yτ (t) = constant as well. Thus it is proved that the only periodic 
solutions saturating the upper bounds are the constant solutions.

We do not know how to state or prove more general claims 
about the uniqueness of the steady optimal stirring strategy. One 
obstruction is the fact that any transiently time-dependent func-
tion x(t) that converges to xs = Pe as t → ∞ will produce precisely 
the same time asymptotic mean transport as x(t) = xs . Moreover, 
at this stage we do not know how to rule out the existence of 
optimal protocols that fluctuate non-periodically forever, i.e., x(t)
which are not periodic but do not converge as t → ∞, even though 
the long time average of 〈x2〉T does converge to Pe2 as T → ∞.

4. Summary and discussion

We have performed two distinct analyses to derive sharp upper 
bounds on long time averaged transport 〈XY 〉T for solutions of the 
Lorenz equations. The background method was employed to prove 
that above onset, i.e., for r > 1,

lim
T →∞〈XY 〉T ≤ b(r − 1) = XsYs (57)

2 Indeed, the differences �y(t) = y(t +τ ) − y(t) and �z(t) = z(t +τ ) − z(t) satisfy 
the homogeneous system (36) when x(t) = xτ (t) is τ -periodic, so both |�y(t)| and 
|�z(t)| converge to zero uniformly (and exponentially) as t → ∞. This is sufficient 
to guarantee the existence of a unique periodic solution to the linear inhomoge-
neous system of differential equations with periodic coefficients defining yτ and zτ .
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where Xs = Ys = ±√
b(r − 1) along with Zs = b − 1 are the non-

trivial fixed points. These steady state solutions will be stable or 
unstable depending on precise parameter values, but in any case 
they establish the sharpness of the estimates.

We then adopted an alternative optimal control approach by 
relaxing the first Lorenz equation (1) while fully enforcing the 
temperature variable dynamics (2) and (3) to seek the suitably 
constrained stirring strategy that maximizes transport. The same 
upper bound emerges from this analysis, a sharp bound saturated 
by a steady stirring, and we investigated uniqueness of the opti-
mizer by considering time periodic solutions of the Euler–Lagrange 
equations. We proved that steady stirring is the unique optimizer 
among appropriately constrained time-periodic controls.

Although the Lorenz equations continue to be the focus of 
much modern theoretical [19,20], computational [21], and exper-
imental [22] research it is widely appreciated that they do not 
inform us quantitatively about high Rayleigh number turbulent 
convection, the problem that provided us with the primary mo-
tivation for this investigation. But evaluation of the accuracy of 
rigorous bounds on heat transport in Rayleigh–Bénard convection 
remains an important open problem for both physics and mathe-
matics, and studies of simplified systems like this help us to assess 
the strength of available analytical tools.

Recent application of the optimal control approach developed in 
Section 3 to spatially extended problems [18] focused on time in-
dependent flows. In order to produce bounds that are relevant for 
turbulent convection, however, optimization must be performed 
over both steady and non-steady stirring strategies. In this paper 
we settled the issue for heat transport in the Lorenz equations: 
steady stirring is the absolute transport maximizer. Not unexpect-
edly, the question is more complicated in spatially extended sys-
tems where the dynamics are defined by nonlinear partial differ-
ential equations. Recognizing this, our next step will be to analyze 
optimal transport in other reduced ordinary differential equation 
models of Rayleigh–Bénard convection, in particular for certain dis-
tinguished higher dimensional Galerkin truncations of Rayleigh’s 
model generalizing the Lorenz equations [23–25].
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