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a b s t r a c t

We investigate absolute limits onheat transport in a truncatedmodel of Rayleigh–Bénard convection. Two
complementary mathematical approaches – a background method analysis and an optimal control for-
mulation – are used to derive upper bounds in a distinguished eight-ODE model proposed by Gluhovsky,
Tong, and Agee. In the optimal control approach the flow no longer obeys an equation of motion, but is in-
stead a control variable. Both methods produce the same estimate, but in contrast to the analogous result
for the seminal three-ODE Lorenz system, the best upper bound apparently does not always correspond
to an exact solution of the equations of motion.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Modal truncations of partial differential equations have a long
history of modeling interesting physics and producing interest-
ingmathematics. Lowdimensional dynamical systems approxima-
tions can provide insights into the full partial differential equations
of motion, and they can serve as a simplified setting in which to
test analytical and numerical techniques. Perhaps most notably,
Bénard’s turn-of-the-previous-century experiments [1] inspired
Rayleigh’s 1916 model [2] employing the Boussinesq approxima-
tion of the Navier–Stokes equations for buoyancy-driven flows,
which subsequently lead to the celebrated Lorenz equations [3]. In
the context of fluid mechanics, certain distinguished truncations,
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e.g., those respecting energy and/or enstrophy conservation in the
inviscid limit, are of particular interest [4]. In this paper we derive
rigorous limits on some time-averaged quantities for solutions of
such a truncation of Rayleigh’smodel in order to develop and study
a new optimal control approach to bounding transport – even tur-
bulent transport – in fluid flows.

In modern dimensionless form, Rayleigh’s model is

∂t∆ψ − J[ψ,∆ψ] = σ∆2ψ + Ra σ ∂xθ (1)
∂tθ − J[ψ, θ] = ∆θ + ∂xψ (2)

where ψ(x, z, t) is the stream function and θ(x, z, t) is the
deviation of the temperature from the linear profile of the conduc-
tion state. The Jacobian J[f , g] = ∂xf ∂zg − ∂xg∂z f , and we con-
sider the spatial domain [0, Aπ ] × [0, π] where A is the aspect
ratio. The stream function satisfies stress-free boundary conditions
(∂2z ψ = 0) and θ vanishes on the vertical (z) boundaries, and ev-
erything is periodic in the horizontal (x) direction. The parameters
of the model are the Prandtl number σ , the ratio of kinematic vis-
cosity to thermal diffusivity in the fluid, and the Rayleigh number
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Ra, the non-dimensional gauge of the imposed temperature drop
across the layer. In this formulation on this domain Ra is the ‘‘tradi-
tional’’ Rayleigh number divided byπ4 so that the onset of convec-
tion for A = 2

√
2 occurs at the minimum critical value Rac =

27
4 .

Weuse angle brackets ⟨·⟩ to denote the spatio-temporal average

⟨f ⟩ = lim
T−→∞

 T

0

dt
T

 Aπ

0

dx
Aπ

 π

0

dz
π

f (x, z, t), (3)

assuming that the long time limit exists. Then the nondimensional
measure of heat transport is the Nusselt number

Nu = 1 + ⟨θ∂xψ⟩, (4)

and the flow intensity is indicated by the Péclet number Pe which
for our purposes is the root mean square vorticity (i.e., the square
root of the enstrophy, which is itself proportional to the bulk
viscous energy dissipation rate):

Pe = ⟨(∆ψ)2⟩1/2. (5)

The Péclet and Nusselt number are related by

Pe2 = Ra(Nu − 1), (6)

derived by multiplying (1) by ψ and taking the spatio-temporal
average employing suitable integrations by parts utilizing the
boundary conditions.

Finite dimensional dynamical systems are naturally derived as
Galerkin truncations of the Boussinesq equations, but only a subset
of such truncations preserves certain physical features of the full
system. For example the seven-ODE model of Thiffeault [5] con-
serves energy in the inviscid limit. The truncation we focus on in
this paper is the eight-ODEmodel of Gluhovsky et al. [6], an exten-
sion of the seven-ODE system that includes an extra shear mode to
conserve enstrophy in the dissipationless limit as well. Recent re-
search revealed that this eight-ODEmodel capturesmanymore de-
tails of the bifurcation structure of Rayleigh’s model near onset [7].
Henceforth we refer to the eight-ODE system as the Double Lorenz
Equations for reasons that will be clear momentarily.

The Double Lorenz Equations [6] emerge from the Galerkin
truncation

ψ(x, z, t)

≈ 2
1 + k2
√
2k

x1(t) sin(kx) sin(z)+
4 + k2
√
2k

x2(t) cos(kx) sin(2z)

+ 2
1 + k2

k
w1(t) sin(z)+

2
3
1 + k2

k
w2(t) sin(3z) (7)

θ(x, z, t) ≈
2

√
2
y1(t) cos(kx) sin(z)+ z1(t) sin(2z)

−
1

√
2
y2(t) sin(kx) sin(2z)+

1
2
z2(t) sin(4z), (8)

where k = 2/A. Rescaling time t → (1 + k2)−1t leads to the
ordinary differential equations for the modal amplitudes

ẋ1 = −σ x1 + σ r1y1 + (c1w1 − d1w2)x2 (9)

ẏ1 = −y1 + x1 − x1z1 +
1
2
(w1 − w2)y2 (10)

ż1 = −b1z1 + x1y1 (11)

ẋ2 = −σax2 + σar2y2 − a(c2w1 − d2w2)x1 (12)

ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (13)

ż2 = −b2az2 + ax2y2 (14)

ẇ1 = −σ
1
4
b1w1 −

3
8
ax1x2 (15)
ẇ2 = −σ
9
4
b1w2 +

3
8
ax1x2 (16)

where the ri (for i = 1, 2) are related to the Rayleigh number and
a rational function of k, and a and bi, ci, di, (also for i = 1, 2)
are parameters that depend on k. The explicit expressions are
tabulated in Appendix A. The (x1, y1, z1) variables are precisely the
familiar (albeit rescaled) Lorenz variableswhich, in this system, are
coupled to a second set of Lorenz-like variables (x2, y2, z2) by the
shear flow modal amplitudesw1 andw2.

The Nusselt and Péclet numbers for the Double Lorenz
Equations are obtained by inserting (7) and (8) into (4) and (5):

Nu = 1 +
1 + k2

2


⟨x1y1⟩ +

a
4
⟨x2y2⟩


, (17)

Pe2 =
1
2
(1 + k2)4

k2
⟨x21⟩ +

1
8
(4 + k2)4

k2
⟨x22⟩ + 2

(1 + k2)2

k2
⟨w2

1⟩

+ 18
(1 + k2)2

k2
⟨w2

2⟩. (18)

The goal is to boundNu as a function of Ra or Pe. Relation (6), which
also holds for the truncated system, is used to convert between Ra
and Pe.

The origin of the eight-dimensional phase space, i.e., x1 = x2 =

w1 = w2 = y1 = y2 = z1 = z2 = 0, corresponds to the no-flow
(Pe = 0) conduction solution with Nu = 1. This state is absolutely
stable when r1 ≤ 1 so we are generally interested in the r1 > 1
regime, i.e., Ra > Rac(k2) = (1 + k2)3/k2.

2. Background analysis

The derivation of bounds on heat transport in high Rayleigh
number and turbulent convection has a long history going back
more than half a century to Howard [8] and Busse [9] who for-
mulated and scrutinized a variational formulation based on bulk
power balances employingmild statistical hypothesis. Herewe ap-
ply a version of the so-called ‘‘background method’’ [10], which
does not require any statistical hypotheses, and derive upper
bounds on Nu that are uniform in the Prandtl number σ . The back-
ground method has been shown to produce the same bounds as
the Howard–Busse approach in some situations [11], but has also
been successfully applied to prove new estimates in other cases
[12,13]. It has also been employed to produce rigorous heat trans-
port bounds for the Lorenz equations [14], some of them sharp
bounds [15].

The analysis proceeds as follows. Decompose the temperature
variables as zi(t) = z0i + ςi(t) where z0i are ‘‘background’’ values
to be chosen later. The uniform-in-time boundedness of all the
dynamical variables [6] (and Appendix B) implies

0 =


d
dt


y21 + ς2

1 − 2z01ς1 +
1
4


y22 + ς2

1 − 2z02ς2


. (19)

(As in [15] we could take finite time averages for t ∈ [0, T ]

throughout the subsequent calculations, leading toO(T−1) correc-
tions to the formulae as T → ∞, but the end result is the limit
supremum of the Nusselt number being bounded by what is de-
rived, so for simplicity of exposition we forgo the demonstration.)
The equations ofmotion for the temperature variables equation in-
serted into (19) reveal

0 = − ⟨y21⟩ − b1⟨ς2
1 ⟩ + (1 − 2z01)⟨x1y1⟩ + b1(z01)

2

−
a
4
⟨y22⟩ −

a
4
b2⟨ς2

2 ⟩ +
a
4
(1 − 2z02)⟨x2y2⟩ +

a
4
b2(z02)

2. (20)

Weemphasize that the derivation of (20) relies only on the temper-
ature equations. Then (6) in the form 0 =

2
1+k2

(−Pe2/Ra+Nu−1)
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yields

0 = −


1
r1

⟨x21⟩ +
a
4

1
r2

⟨x22⟩ +
1
r3

⟨w2
1⟩ +

1
r4

⟨w2
2⟩


+ ⟨x1y1⟩

+
a
4
⟨x2y2⟩ (21)

where ri (for i = 1, 2, 3, 4) are proportional to Ra and a rational
function of k; see Appendix A. Adding (20) and (21) produces the
expression

0 = − ⟨y21⟩ − b1⟨ς2
1 ⟩ −

a
4
⟨y22⟩ −

a
4
b2⟨ς2

2 ⟩

+ 2(1 − z01)⟨x1y1⟩ + b1(z01)
2
−

1
r1

⟨x21⟩

+ 2
a
4
(1 − z02)⟨x2y2⟩ +

a
4
b2(z02)

2
−

a
4

1
r2

⟨x22⟩

−
1
r3

⟨x23⟩ −
1
r4

⟨x24⟩. (22)

Now introduce ‘‘balance parameter’’ α and add zero in the form
α× (22) to the right hand side of

⟨x1y1⟩ +
a
4
⟨x2y2⟩ =

1
r1

⟨x21⟩ +
a
4

1
r2

⟨x22⟩ +
1
r3

⟨w2
1⟩ +

1
r4

⟨w2
2⟩ (23)

to see that

⟨x1y1⟩ +
a
4
⟨x2y2⟩

=


x1 y1

 1
r1
(1 − α) α(1 − z01)

α(1 − z01) −α

x1
y1


+ b1α(z01)

2

+
a
4


x2 y2

 1
r2
(1 − α) α(1 − z02)

α(1 − z02) −α

x2
y2



+
a
4
b2α(z02)

2

−αb1⟨ς2
1 ⟩ − α

a
4
b2⟨ς2

2 ⟩ +


1 − α

r3


⟨w2

1⟩

+


1 − α

r4


⟨w2

2⟩. (24)

The essence of the background method is the observation that
if we can choose α ∈ [1,∞) and z01 and z02 so that the matrices in
(24) are negative semi-definite, then we have produced an upper
bound on 2

1+k2
(Nu − 1) of the form

⟨x1y1⟩ +
a
4
⟨x2y2⟩ ≤ b1α(z01)

2
+

a
4
b2α(z02)

2. (25)

For example choosing z01 = 0 = z02 , it is easy to check that both
matrices are negative semi-definite when r1 ≤ (α − 1)/α. Thus
Nu = 1 is the upper bound for Ra ≤ (α − 1)(1 + k2)3/α k2 for
any α ∈ [1,∞). Taking the limit α → ∞, this shows that the
Nu = 1 conduction state is absolutely stable for all Ra < Rac(k2) ≡

(1 + k2)3/k2.
To deduce bounds for higher Rayleigh numbers (r1 > 1), let

α =
z01+z02

(z01 )
2+(z02 )

2 ; we will soon choose z01 ∈ (0, 1) and z02 ∈ [0, 1) so

that α ∈ (1,∞). Introduce

ρ1 =
(1 + k2)3

k2
and ρ2 =

(4 + k2)3

k2
(26)

so that ri = Ra/ρi for i = 1, 2 and let the background variables be

z01 =


1 −

ρ1

Ra


and z02 = 0. (27)
Then the matrices in (24) are both negative semi-definite for ρ1 <
Ra ≤

√
ρ1ρ2.

For Ra >
√
ρ1ρ2 choose

z01 =
√
ρ1

−ρ1 + 2Ra

ρ2
ρ1

− ρ2 +

(ρ1 + ρ2)2 + 4Ra(Ra − 2

√
ρ1ρ2)

2Ra(
√
ρ1 +

√
ρ2)

,

z02 =


ρ2

ρ1
(z01 − 1)+ 1.

Then it is straightforward (albeit somewhat tedious) to confirm
that z01 , z

0
2 ∈ (0, 1) and the matrices are negative semi-definite

when Ra >
√
ρ1ρ2. Combining the results, the upper bounds are

Nu ≤



1 for Ra ∈ [0, ρ1)

1 + 2

1 −

ρ1
Ra


for Ra ∈ [ρ1,

√
ρ1ρ2)

1 + 2

1 −

ρ1
Ra


+

ρ1 − ρ2 +


(ρ2 − ρ1)2 + 4(Ra −

√
ρ1ρ2)2

Ra
for Ra ∈ [

√
ρ1ρ2,∞).

(28)

Fig. 1. (Color online) The top (black) dashed line is the best known upper bound
for the full Rayleigh–Bénard problem from [16]. The solid (green) curve is the
background method upper bound on all solutions of the Double Lorenz Equations.
Rayleigh–Nusselt relations for several steady states are also shown. The dotted (red)
curve asymptoting to Nu = 3 is the steady solution of the first Lorenz system, and
the lower dotted (blue) curve is the steady state of the second Lorenz system. The
long-dashed (purple) curve is the steady state for the coupled system for σ = 10.
The discrete dots are results from time averages of direct numerical simulations of
the Double Lorenz Equations for σ = 10.

Fig. 1 is a plot of the bound, the steady state solutions, and
results of some direct numerical simulations (dns) of the Double
Lorenz Equations with aspect ratio A = 2

√
2 and Prandtl number

σ = 10. For additional information the best known numerically
computed upper bound (the black dashed line) for the PDE is
included in the figure as well [16]. The dns data is generated using
a finite time sample of a signal that is integrated for a long enough
time interval to eliminate transients. It is computed using three
different definitions of the Nusselt number (which are equivalent
in the long time average) and are within one percent of one
another for the finite time samples of the figure. Indeed, theNusselt
number has all of the following representations,

Nu = 1 +
1 + k2

2


x1y1 +

a
4
x2y2


,

Nu = 1 + Pe2/Ra

= 1 +


1
r1

⟨x21⟩ +
a
4

1
r2

⟨x22⟩ +
1
r3

⟨w2
1⟩ +

1
r4

⟨w2
2⟩


1 + k2

2
,

Nu = 1 + 2⟨z1 + z2⟩.
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The bound is sharp – saturated by the nontrivial steady state –
until Ra = 81

√
3/4 ≈ 35 (i.e.,

√
ρ1ρ2 for this aspect ratio) but ap-

parently not at higher Rayleigh numbers. The steady states appear
to be stable until around Ra ≈ 140 at which point the solutions
become time-dependent. The second drop in the numerically com-
putedNusselt number at around Ra ≈ 290 comes from a transition
to seemingly periodic solutions. For this truncated system the Nus-
selt number bound asymptotes to Nu = 5 as can be seen from (28)
by taking the limit Ra → ∞.

As will be shown in the next section, the upper bound cannot
be lowered by including more information from the equations
of motion for the temperature variables. This does not preclude
the possibility of lowering the bound by incorporating additional
constraints via the velocity equations x1, x2, w1 and w2. In the
backgroundmethod the only place the velocity variables came into
the background analysis is via the Pe2 = Ra (Nu − 1) relation.

3. Optimal control analysis

We now provide a complementary analysis to bound heat
transport in the Double Lorenz system. Instead of subjecting the
velocity variables xi, wi to a momentum equation, we fix the total
intensity of all the variables, the Péclet number (18), and attempt
to deduce the optimal stirring strategy. Said differently, we treat
the velocity field variables xi and wi for i = 1, 2 as control
variables subject to the finite Péclet number condition. A global
upper bound to this optimal control problem is an upper bound
to heat transport in the Double Lorenz Equations with Ra defined
by (6). This formulation has the additional benefit of producing
flows for which the upper boundmay be achieved, something that
is lacking in the background method.

The optimal control problem is to maximize ⟨x1y1 +
a
4x2y2⟩ ≡

2
1+k2

(Nu − 1) subject to

ẏ1 = −y1 + x1 − x1z1 +
1
2
(w1 − w2)y2 (29)

ż1 = −b1z1 + x1y1 (30)
ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (31)
ż2 = −b2az2 + ax2y2 (32)

Pe2 =


2
ρ1

b1
x21 + 2

ρ2

b2
x22 +

ρ1b1
2


w2

1 + 9w2
2


, (33)

where the expression for Péclet has been rewritten using the
definitions of ρ1, ρ2, b1, and b2 in preparation for subsequent
calculations (see Appendix A for the definitions of the constants).
Equivalently, the functional to be extremized is

F =


x1y1 +

a
4
x2y2


+ υ1


−y1 + x1 − x1z1 +

1
2
(w1 − w2)y2 − ẏ1


− ζ1(−b1z1 + x1y1 − ż1)

+
1
4
υ2 (−ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 − ẏ2)

−
1
4
ζ2 (−b2az2 + ax2y2 − ż2)

+
µ

2


Pe2 −


2
ρ1

b1
x21 + 2

ρ2

b2
x22 +

ρ1b1
2


w2

1 + 9w2
2


(34)

where the Lagrange multipliers (a.k.a. adjoint variables) υi(t) and
ζi(t) for i = 1, 2 enforce the temperature equations andµ enforces
the finite Péclet number condition. The Euler–Lagrange equations
for the extreme values are the temperature and adjoint variable
differential equations

ẏ1 = −y1 + x1 − x1z1 +
1
2
(w1 − w2)y2 (35)

ż1 = −b1z1 + x1y1 (36)

υ̇1 = υ1 − x1 + x1ζ1 +
1
2
(w1 − w2)υ2 (37)

ζ̇1 = b1ζ1 − x1υ1 (38)
ẏ2 = −ay2 + ax2 − ax2z2 − 2(w1 − w2)y1 (39)
ż2 = −b2az2 + ax2y2 (40)
υ̇2 = aυ2 − ax2 + ax2ζ2 − 2(w1 − w2)υ1 (41)

ζ̇2 = b2ζ2 − x2υ2 (42)

and the optimal stirring conditions

x1 =
1
2µ

b1
ρ1
(υ1(1 − z1)+ y1(1 − ζ1)) (43)

x2 =
1
2µ

b1
ρ2
(υ2(1 − z2)+ y2(1 − ζ2)) (44)

w1 =
1
µ

1
ρ1b1

(υ1y2 − υ2y1) (45)

w2 = −
9
µ

1
ρ1b1

(υ1y2 − υ2y1) (46)

Pe2 =


2
ρ1

b1
x21 + 2

ρ2

b2
x22 +

ρ1b1
2


w2

1 + 9w2
2


. (47)

The identity a
4b2 = b1 was used in deriving the expression for

x2, a helpful simplification for later calculations. We refer to this
entire system as the Optimal Double Lorenz Equations, and in the
following analysis we prove that the global optimum upper bound
on the Nusselt number is realized by a steady solution.

Some of the steady solutions to the Optimal Double Lorenz
Equations for


1
µ

b1
ρ2

− 1 ≥ 0 are

yi = υi = bi
xi

bi + (xi)2
(48)

zi = ζi =
(xi)2

bi + (xi)2
(49)

(xi)2 = bi


b1
ρiµ

− 1


(50)

wi = 0 (51)

Pe2 = 2


b1
µ

√
ρ1 +

√
ρ2

− 2ρ1 − 2ρ2 (52)

for i = 1, 2. If


1
µ

b1
ρ2

− 1 ≤ 0 and


1
µ

b1
ρ1

− 1 ≥ 0 then 0 = x2 =

y2 = z2 = ζ2 = υ2, Eqs. (48) through (51) remain the same for

i = 1, and Pe2 = 2


ρ1b1
µ

− ρ1


. Lastly, if


1
µ

b1
ρ1

−1 ≤ 0 then the
only solution to the equations is zero. Eliminating µ in favor of Pe,
reveals two exceptional Péclet regimes 0 ≤ Pe2 ≤ 2(

√
ρ1ρ2 − ρ1)

and Pe2 > 2(
√
ρ1ρ2 − ρ1). Of particular interest are the steady

state solutions for z1 and z2 rewritten in terms of Péclet in the
different regimes,

z1 =


Pe2

Pe2 + 2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)]

Pe2 + 2(ρ2 −
√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞),

(53)
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z2 =


0 for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)]

Pe2 + 2(ρ1 −
√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(54)

Note that Nu = 1 + 2(z1 + z2) so the corresponding transport
values are

Nu =


1 + 2

Pe2

Pe2 + 2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)]

1 + 4
Pe2 + (

√
ρ2 −

√
ρ1)

2

Pe2 + 2(ρ1 + ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(55)

Using (6) to re-express (55) in terms of Ra we recover (28). That
is, these steady states correspond precisely to the background
bound.

We now show that the Nusselt number for any solution of
the Optimal Double Lorenz Equations is bounded from above by
steady solutions. To do so we will employ the background method
yet again. The equations of motion for the momentum variables
(xi, wi) for i = 1, 2 are no longer available, but we still have the
evolution equations for the temperature variables yi and zi (for i =

1, 2) to work with, and the same background-type decomposition
zi = ςi + z0i can be used.

Only the temperature equations were used to derive (20), so it
still holds for the Optimal Double Lorenz system. Adding ⟨x1y1⟩
+

a
4 ⟨x2y2⟩ to both sides of (20), and then adding zero in the

form

0 = α2

1 −


2 ρ1b1 x

2
1 + 2 ρ2b2 x

2
2 +

ρ1b1
2


w2

1 + 9w2
2


Pe2

 (56)

(where α2
≥ 0) to the right hand side of (20), it is evident that

⟨x1y1⟩ +
a
4
⟨x2y2⟩

= α2
+ b1(z01)

2
−


x1 y1

 2ρ1
b1Pe2

α2 z01 − 1

z01 − 1 1

x1
y1



− b1⟨ς2
1 ⟩ −

α2

Pe2
ρ1b1
2

⟨w2
1⟩ +

a
4
b2(z02)

2

−
a
4


x2 y2

 2ρ2
b1Pe2

α2 z02 − 1

z02 − 1 1

x2
y2



−
a
4
b2⟨ς2

2 ⟩ −
α2

Pe2
9ρ1b1

2
⟨w2

2⟩. (57)

The relation a
4b2 = b1 was used to rewrite the top left corner of the

second matrix.
We must now choose the background and constant α2. Let

α2
= b1(z01(1 − z01)+ z02(1 − z02)). (58)

For the Pe2 ≤ 2(
√
ρ1ρ2 − ρ1) regime pick the steady states

z01 =
Pe2

Pe2 + 2ρ1
and z02 = 0 (59)

and confirm that the secondmatrix in (57) is positive definite. Also,
the relation

2ρ1
b1

α2

Pe2
= (1 − z01)

2 (60)
holds allowing us to rewrite (57) in the Pe2 ≤ 2(
√
ρ1ρ2 − ρ1)

regime as

⟨x1y1⟩ +
a
4
⟨x2y2⟩

= b1
Pe2

Pe2 + 2ρ1
− ⟨(x1(z01 − 1)+ y1)2⟩ − b1⟨ς2

1 ⟩

−
a
4
⟨(x2 − y2)2⟩ −

a
4


4ρ1ρ2

(Pe2 + 2ρ1)2
− 1


⟨x22⟩ −

a
4
b2⟨ς2

2 ⟩

−
α2

Pe2
ρ1b1
2
(⟨w2

1⟩ + 9⟨w2
2⟩). (61)

This expression implies that b1 Pe2

Pe2+2ρ1
is an upper bound since all

the subsequent terms are negative. An examination of (55) reveals
a correspondence to a steady state Nusselt number.

For the Pe2 > 2(
√
ρ1ρ2−ρ1) regimewe again pick steady state

solutions for zi for the backgrounds, namely,

z01 =
Pe2 + 2(ρ2 −

√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
and

z02 =
Pe2 + 2(ρ1 −

√
ρ1ρ2)

Pe2 + 2(ρ1 + ρ2)
.

(62)

Observe that

1 − z01 = 2
ρ1 +

√
ρ1ρ2

Pe2 + 2(ρ1 + ρ2)
= 2

√
ρ1

√
ρ1 +

√
ρ2

Pe2 + 2(ρ1 + ρ2)
, (63)

1 − z02 = 2
ρ2 +

√
ρ1ρ2

Pe2 + 2(ρ1 + ρ2)
= 2

√
ρ2

√
ρ1 +

√
ρ2

Pe2 + 2(ρ1 + ρ2)
, (64)

α2
= b12

Pe2
√
ρ1 +

√
ρ2
2

(Pe2 + 2(ρ1 + ρ2))2
, (65)

hence the top left corners of the matrices in (57) are simplified to

2ρ1
b1

α2

Pe2
= 4ρ1

√
ρ1 +

√
ρ2
2

(Pe2 + 2(ρ1 + ρ2))2
= (1 − z01)

2, (66)

2ρ2
b1

α2

Pe2
= 4ρ2

√
ρ1 +

√
ρ2
2

(Pe2 + 2(ρ1 + ρ2))2
= (1 − z02)

2. (67)

With these facts in place rewrite (57) as

⟨x1y1⟩ +
a
4
⟨x2y2⟩ =2b1

Pe2 + (
√
ρ2 −

√
ρ1)

2

Pe2 + 2(ρ1 + ρ2)

− ⟨(x1(z01 − 1)+ y1)2⟩ − b1⟨ς2
1 ⟩

−
a
4
⟨(x2(z02 − 1)+ y2)2⟩ −

a
4
b2⟨ς2

2 ⟩

−
α2

Pe2
ρ1b1
2
(⟨w2

1⟩ + 9⟨w2
2⟩). (68)

All the terms following 2b1
Pe2+(

√
ρ2−

√
ρ1)

2

Pe2+2(ρ1+ρ2)
are negative and again

we have a correspondence to a steady state Nusselt number in (55).
This establishes that the absolutemaximumvalue is realized by the
optimal steady state stirring, i.e., for any extremum of F we have

Nu ≤


1 + 2

Pe2

Pe2 + 2ρ1
for Pe2 ∈ [0, 2(

√
ρ1ρ2 − ρ1)],

1 + 4
Pe2 + (

√
ρ2 −

√
ρ1)

2

Pe2 + 2(ρ1 + ρ2)
for Pe2 ∈ [2(

√
ρ1ρ2 − ρ1),∞).

(69)
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Fig. 2. (Color online) Time dependence of optimal 2π (time) periodic stirring
protocols for several value of the Péclet number and k = 1/

√
2. Herewe show x1(t).

Long dashed (green) line: Pe = 4.2; short dashed (blue) line: Pe = 5.4; dotted (red)
line Pe = 14.1; and solid (black) curve: Pe = 35.1.

3.1. Comparison of steady state to periodic solutions

Eqs. (61) and (68) show that the only periodic solutions that
saturate the upper bound are the steady. Indeed, in the Pe2 ≤

2(
√
ρ1ρ2 − ρ1) regime if equality holds in (69) then it must be the

case that wi = ζi = 0 for i = 1, 2, x1(1 − z1) = y1, x2 = y2. This
means that zi is constant; it is equal to the background. Using the
yi equations and the relations x1(1 − z1) = y1 and x2 = y2, we
can conclude that ẏi = 0 and that x2 = y2 = z2 = 0. Similar
reasoning leads to the same conclusion about the optimizer for
Pe2 ≥ 2(

√
ρ1ρ2 − ρ1).

It is interesting to examinewhy the periodic solutions doworse
than the steady state.We have computed time-dependent periodic
solutions to the Optimal Double Lorenz system using standard
methods: a Fourier Galerkin truncation, Newton–Kantorovich
iteration, and numerical continuation. This is the same method
that was used in [15]. In Fig. 2 we show the solutions for x1(t)
for several different Péclet number. As the Péclet number is
increased the solutions begin to develop sharp transition regions
from positive/negative steady states. That is, it appears that the
controls ‘‘want’’ to remain steady, but are unable to do so due to
the branch that they were numerically continued from.

Fig. 3. (Color online) The top (green) curve is the upper bound on the Nusselt
number. Rayleigh–Nusselt relations for several steady states of the Double Lorenz
Equations are also shown. The long-dashed (purple) purple lines are the coupled
steady state solutions for several Prandtl numbers, σ = 0.44 (bottom), 0.70, 1.42,
5.75 and 104 (top), and wavenumber is k = 1/

√
2. The upper dotted (red) curve

is the first Lorenz system steady state while the lower dotted (blue) curve is that
for the second Lorenz system. The dashed (black) line is the transport for a time-
periodic solution to the optimal Double Lorenz system.
This is exactly analogous towhat happens in the optimal control
version of the (single) Lorenz system [15], where the transition
between steady states control values is even simpler, absent some
of the ‘‘ringing’’ that is seen in Fig. 2. The forced transitions in
the time-dependent, albeit locally optimal, control have a cost in
terms of the transport: it is definitely below the transport that is
achieved by steady flow variables. Fig. 3 is a plot of the Nusselt
number for some locally-optimal time-periodic controls and the
steady state controls for the Optimal Double Lorenz Equations,
along with some steady states of the Double Lorenz Equations at
a selection of Prandtl numbers.

4. Discussion and summary

The apparent inability of both the background method and
the optimal control problem to produce sharp upper bounds past
Ra =

√
ρ1ρ2 deserves some comment. It is possible that unstable

time-dependent solutions to the Double Lorenz system saturate
the upper bound, but we do not expect this to be the case. In
the double Lorenz model the only way to activate both Lorenz
modes at the same time ((xi, yi, zi) for i = 1, 2) and hence have
enhanced heat transport is to also have non-zero shear modes (wi
for i = 1, 2). That is to say ifw1 = 0 orw2 = 0 then the equations
of motion imply that either the first Lorenz mode is zero or the
second. These shear modes do not contribute to heat transport
and thus, as far as the optimal control problem or the background
method is concerned, are ineffectual. The optimal control problem
may choose to ignore these modes and achieve the same Nusselt
number at a reduced Péclet cost. It seems that the only way to
lower the bound is to either incorporate a shear mode constraint
(or an advective constraint) into the optimal control formulation
or perhaps a more judicious combination of moments from the
equations of motion in the background method. The advective
term of the velocity equations in the PDE is notoriously difficult
to deal with and the goal of the optimal control formulation
is precisely to bypass this barrier. Thus for the optimal control
problem considered here incorporating additional constraints on
the velocity variables detaches us from the original PDE optimal
control problem.

In this work we investigated a truncated version of Rayleigh’s
model of thermal convection of a fluid heat from below using a
combination of numerical and analytical techniques, producing
rigorous upper bounds via the background method and a new
optimal control formulation. The optimal control problems consist
of maximizing the Nusselt number subject to incompressibility,
the advection–diffusion equation, and an enstrophy amplitude
condition. We obtained analytic steady-state solutions, numerical
time-dependent periodic solutions, and rigorous bounds on heat
transport for these systems. The bound is not saturated by steady
or, apparently, time-dependent solutions of the Double Lorenz
Equations, but they are realized as a fixed point of the Optimal
Double Lorenz system. The eight mode model considered here
suggests that steady solutions of the full optimal system produce
the largest heat transport. This, in turn, indicates that the results
of the optimal transport analysis for the full partial differential
equations in Hassanzadeh et al. [17], which were limited to time-
independent controls, may be more general than presumed.
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Appendix A. Dictionary of coefficients and parameters

The constants in this paper are as follows:

Ra = The Rayleigh number (A.1)
Nu = The Nusselt number (A.2)
σ = Prandtl number (A.3)
A = Aspect Ratio (A.4)
k = 2/A (A.5)

ρ1 =
(1 + k2)3

k2
(A.6)

ρ2 =
(4 + k2)3

k2
(A.7)

c1 =
(3 + k2)(4 + k2)

2(1 + k2)2
(A.8)

d1 =
(4 + k2)(k2 − 5)

2(1 + k2)2
(A.9)

c2 =
2k2(1 + k2)2

(4 + k2)3
(A.10)

d2 =
2(1 + k2)2(k2 − 8)

(4 + k2)3
(A.11)

a =
4 + k2

1 + k2
(A.12)

b1 =
4

1 + k2
(A.13)

b2 =
16

4 + k2
(A.14)

r1 =
Ra
ρ1

(A.15)

r2 =
Ra
ρ2

(A.16)

r3 =
k2b1
16

Ra (A.17)

r4 =
k2b1
128

Ra. (A.18)

We use the relations
2ρ1
b1

c1 −
2ρ2
b2

c2 −
3
4
aρ1 = 0 (A.19)

−
2ρ1
b1

d1 +
2ρ2
b2

d2 +
3
4
aρ1 = 0 (A.20)

to derive (6) for the truncated system.

Appendix B. Dictionary of bounds

Consider the energy function
E(y1, z1, y2, z2) =

1
2


y21 + (z1 − 1)2 +

1
4


y22 + (z2 − 1)2


. (B.1)

Taking the time derivative and making use of the temperature
variable equations (10), (11), (13), and (14) yields

Ė(y1, z1, y2, z2) = −y21 − b1z21 + b1z1 +
a
4


−y22 − b2z22 + b2z2


.

(B.2)
Adding zero in the form 2α(E − E) where α ∈ (0,min{1, b1})
to the right hand side of (B.2) results in the following differential
inequality,

Ė(y1, z1, y2, z2)

= −2αE +
5
4
α + (α − 1)y21 + (α − b1)z21 + (b1 − 2α)z1

+
1
4


(α − a)y22 + (α − ab2)z22 + (ab2 − 2α)z2


= −2αE +

5
4
α +

(b1 − 2α)2

4(b1 − α)
+
(ab2 − 2α)2

16(ab2 − α)

+ (α − 1)y1 + (α − b1)

z1 +

b1 − 2α
2(α − b1)

2

+
α − a

4
y2 +

α − ab2
4


z2 +

ab2 − 2α
2(α − ab2)

2

≤ −2αE +
b21

4(b1 − α)
+

b21
(4b1 − α)

. (B.3)

The differential inequality may be solved to yield

E(t) ≤e−2αt

E0 −

1
2α


b21

4(b1 − α)
+

b21
(4b1 − α)


+

1
2α


b21

4(b1 − α)
+

b21
(4b1 − α)


(B.4)

where E0 is the initial value of the energy (B.2). The α ∈

(0,min{1, b1}] that minimizes the steady state of (B.4) is not
terribly illuminating (it is the root of a cubic), thus we will instead
pick the simpler but suboptimal α = b1/2 for b1 ∈ (0, 2] and
α = 1 for b1 ∈ (2,∞) to explicitly display the time-asymptotic
bounds

lim sup
t−→∞

E(y1, z1, y2, z2)

≤


9
14

for b1 ∈ (0, 2)

1
2


b21

4(b1 − 1)
+

b21
(4b1 − 1)


for b1 ∈ [2,∞)

(B.5)

on the temperature variables.
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