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Gradient ascent methods are developed to compute incompressible flows that
maximize heat transport between two isothermal no-slip parallel walls. Parameterizing
the magnitude of the velocity fields by a Péclet number Pe proportional to their
root-mean-square rate of strain, the schemes are applied to compute two-dimensional
flows optimizing convective enhancement of diffusive heat transfer, i.e. the Nusselt
number Nu up to Pe ≈ 105. The resulting transport exhibits a change of scaling
from Nu − 1 ∼ Pe2 for Pe < 10 in the linear regime to Nu ∼ Pe0.54 for Pe > 103.
Optimal fields are observed to be approximately separable, i.e. products of functions
of the wall-parallel and wall-normal coordinates. Analysis employing a separable
ansatz yields a conditional upper bound . Pe6/11

= Pe0.54 as Pe→∞ similar to the
computationally achieved scaling. Implications for heat transfer in buoyancy-driven
Rayleigh–Bénard convection are discussed.
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1. Introduction
Heat transfer via fluid advection is a critical component of atmospheric, oceanogra-

phic, geophysical and astrophysical dynamics, as well as being the basis of cooling
systems in engineering applications. Numerous studies on how to design systems that
achieve enhanced heat transfer by either manipulation of domain geometry or through
the discovery of suitable flow structures have recently appeared in the literature
(Alben 2017; Toppaladoddi, Succi & Wettlaufer 2017; Marcotte et al. 2018; Motoki,
Kawahara & Shimizu 2018a,b). A particularly fruitful approach to discovering flow
structures was first introduced by Hassanzadeh, Chini & Doering (2014), where it
was formulated via an optimal control approach.

† Email address for correspondence: andrenogueirasouza@gmail.com
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889 A34-2 A. N. Souza, I. Tobasco and C. R. Doering

The original motivation for Hassanzadeh et al. (2014) was to develop a new tool
for obtaining upper bounds on thermal transport by buoyancy-driven flows, e.g. for
Rayleigh–Bénard convection. The analysis and derivation of upper bounds on transport
properties plays a prominent role in expanding our knowledge of fundamental fluid
dynamics and serves a complimentary role to other methods of inquiry, i.e. direct
numerical simulations of the underlying equations of motion, invoking closure models
to determine statistical properties, or postulating phenomenological models of turbulent
transport. The first proof of upper bounds on heat transfer by Rayleigh–Bénard
convection was achieved in Howard (1963). The complementary ‘background method’
was subsequently introduced in Doering & Constantin (1996). Both approaches
leverage certain bulk integral constraints derived from the equations of motion and
yield bounds which apply to a strictly larger class of flows. It remains unknown
whether the resulting bounds are realizable by buoyancy-driven flows.

Unlike those previous approaches, the wall-to-wall transport problem introduced
in Hassanzadeh et al. (2014) fully enforces the advection–diffusion equation for the
temperature field pointwise in space and time. Admissible incompressible advecting
flow fields do not (necessarily) satisfy an equation of motion, but are instead subject to
a bulk integral intensity constraint, i.e. fixed finite magnitude of energy or enstrophy,
and suitable boundary conditions. This allows consideration of the following question:
amongst all possible incompressible flow fields subject to a fixed intensity constraint
and relevant boundary conditions, which ones maximize thermal transport?

As usual, we model heat transport with the advection–diffusion equation

∂tT +∇ · (uT − κ∇T)= 0, (1.1)

where the coefficient κ is the thermal diffusivity. The two-dimensional spatial domain
is Ω = [0, Lx) × [0, Lz] and the temperature field T is periodic in the horizontal x
direction, ‘hot’ on the bottom boundary where T(z = 0) = T0 and ‘cool’ on the top
boundary where T(z = Lz) = T1 with T0 > T1. The advecting flow field u = u1x̂ +
u3ẑ is divergence free (∇ · u = 0) with no penetration through the boundaries, i.e.
u3(z = 0) = 0 = u3(z = Lz). In this paper the velocity is restricted to satisfy no-slip
boundary conditions on the top and bottom boundaries, u1(z = 0) = 0 = u1(z = Lz).
Both components are periodic in the horizontal x direction. Other boundary conditions
can be handled using similar methods. Initial (t= 0) data for the temperature field are
provided to formally pose the evolution problem for t > 0. Using units Lz and L2

z/κ
for space and time and changing the temperature T→ (T − T0)/(T1 − T0) transforms
the system to

∂tT +∇ · (uT −∇T)= 0, (1.2)

with x ∈ [0, Γ ) where Γ = Lx/Lz, z ∈ [0, 1], and with T(z= 0)= 1 and T(z= 1)= 0.
We consider (1.2) henceforth.

Given a flow field u the non-dimensional measure of thermal transport is the space-
and long-time average of the convective heat flux in the vertical direction, i.e. the
Nusselt number

Nu{u} = 〈u3T − ∂zT〉, (1.3)

where 〈·〉 denotes the space–time average

〈 f 〉 ≡ lim sup
τ→∞

1
τΓ

∫ τ

0

∫ 1

0

∫ Γ

0
f (x, z, t) dx dz dt. (1.4)

The boundary conditions imply unit mean conductive heat flux, i.e. 〈−∂zT〉 = 1.
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Wall-to-wall optimal transport 889 A34-3

In this work, the goal is to determine the largest possible value of Nu as a function
of u, which we parameterize by a Péclet number defined as the root-mean-square
vorticity (the square root of the mean enstrophy density) Pe ≡ 〈|∇ × u|2〉1/2.
Incompressibility and the boundary conditions imply that Pe is simply related to
the norm of ∇u and the mean-square rate of strain,

Pe2
= 〈|∇× u|2〉 = 〈|∇u|2〉 = 2〈|(∇u)sym|

2
〉 ≡ |∇u1|

2
+ |∇u3|

2. (1.5)

The optimal wall-to-wall transport problem is then to maximize Nu as a function of Pe.
Explicitly, we take on the task to

Maximize 〈u3T〉 subject to (1.6)
∂tT + u · ∇T =1T,

∇ · u= 0, 〈|∇u|2〉 = Pe2, (1.7)
and the boundary conditions. (1.8)

Note in the wall-to-wall problem the velocity field u is not required to satisfy
conservation of momentum. Nevertheless, in Hassanzadeh et al. (2014) its solution
was shown to inform bounds on buoyancy-driven driven transport; indeed, the original
motivation for introducing the wall-to-wall problem was to find new upper bounds
on the Nusselt number in Rayleigh–Bénard convection modelled by the Boussinesq
equations

∂tu+ u · ∇u+∇p= Pr1u+ Pr Ra T ẑ, (1.9)
∇ · u= 0, (1.10)

and
∂tT + u · ∇T =1T. (1.11)

Here, the Prandtl number Pr and the Rayleigh number Ra are given by

Pr= ν/κ and Ra=
αg(T1 − T0)(Lz)

3

κν
, (1.12a,b)

where ν is the kinematic viscosity, g is the acceleration due to gravity and α is the
thermal expansion coefficient. The challenge for Rayleigh–Bénard is to derive upper
bounds on the convective heat transport of the form Nu− 1 6 f (Pr, Ra) that hold for
all solutions of the Boussinesq system. The connection between the Péclet number Pe
and the Rayleigh number Ra is obtained by dotting u into (1.9) and averaging over
space and time (utilizing integration by parts with the given boundary conditions and
(1.10)) to obtain the identity Pe2

= Ra(Nu− 1).
The flow field of the wall-to-wall problem is not constrained to satisfy the

Navier–Stokes system, but free to be any incompressible flow field with finite Pe.
As a result, any upper bound for the wall-to-wall problem implies an upper bound
for convective heat transport among solutions of the Boussinesq equations. Indeed,
let (Nu)natural denote the largest possible heat transport of the Boussinesq system and
(Nu)optimal denote the largest possible heat transport of the wall-to-wall problem for
the same Péclet number, then (Nu)natural 6 (Nu)optimal. Now, suppose that we find an
upper bound of the form (Nu − 1)optimal 6 cPeβ where 0 < β < 2 and 0 < c for the
wall-to-wall problem, then

(Nu− 1)natural 6 (Nu− 1)optimal 6 cPeβ (1.13)

implies
Pe2

Ra
6 (Nu− 1)optimal 6 cPeβ, (1.14)
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889 A34-4 A. N. Souza, I. Tobasco and C. R. Doering

by utilizing the Pe2
= Ra(Nu − 1)natural from (1.9). This, in turn, means Pe 6

c1/(2−β)Ra1/(2−β) and hence, (Nu − 1)natural 6 c2/(2−β)Raβ/(2−β). In summary, an upper
bound of the form (Nu − 1)optimal 6 cPeβ implies an upper bound of the form
(Nu− 1)natural 6 c2/(2−β)Raβ/(2−β). The stress-free results of Hassanzadeh et al. (2014)
were that Nu . Pe10/17 or, in terms of Rayleigh–Bénard convection, Nu . Ra5/12.

The optimal wall-to-wall transport problem is evidently non-convex – there may be
many local maxima and global extrema – and only by evaluating the global maximum
are we assured of an upper bound for Rayleigh–Bénard convection. Nevertheless, to
make progress, we seek local maxima numerically in this paper and discuss the
resulting flows. These flows are of interest in their own right as mechanisms to
significantly enhance heat transport, e.g. as targets for control.

The rest of this paper is organized as follows. We first introduce Lagrange
multipliers to implement the constraints of the wall-to-wall optimal transport problem
and examine the structure of the resulting functional in § 2. From insights gained from
manipulations of the functional, we develop time-stepping algorithms in § 3 to solve
the Euler–Lagrange equations. Solutions to the saddle point conditions and resulting
transport scalings are presented for time-independent two-dimensional flow fields with
no-slip boundaries in § 4. Upon investigation of the numerical solutions we see that
the fields are to a very high degree separable, i.e. the computed streamfunctions satisfy
ψ(x, z) ≈ φ(x)Ψ (z) and similarly for the other fields. This numerical observation
motivates an analytic examination of upper bounds on the wall-to-wall problem with
an additional separable ansatz – which is apparently almost satisfied by solutions
of the wall-to-wall Euler–Lagrange equations – in § 5 leading to conditional upper
bounds on heat transport of the form Nu . Pe6/11 or, in terms of Rayleigh number,
Nu . Ra3/8.

Along the way, we discuss the relationship of the wall-to-wall optimal transport
problem to the background method of Doering & Constantin (1996) in § 2.4, and to
the Howard–Busse–Malkus problem (Malkus 1954; Howard 1963; Busse 1969)
in § 2.6. The perspective developed in those sections inspires the design of a
time-stepping algorithm for computing optimal flows, similar to that in Wen et al.
(2015) for computing optimal background fields. Our methods of temporal and spatial
discretization are described, respectively, in § 3.2 and appendix A. In particular, we
find in § 3.1 that evolving the equations

∂τξ =1ξ − u · ∇η+ u3, (1.15)
0=−1η− u · ∇ξ, (1.16)

∂τu=µ1u− ξ∇η+ ξ ẑ+ 1
2∇p, (1.17)

0=∇ · u (1.18)

forward in pseudo-time τ (for a fixed constant µ) subject to homogeneous boundary
conditions for η and ξ and no-slip boundary conditions for u yields local maxima of
the wall-to-wall problem. One of the many benefits of the algorithms described here
is that optimal flow fields may be computed for other geometries, e.g. cylinders, given
suitable Poisson and Stokes equations solvers.

2. Theory
In this section we utilize Lagrange multipliers to rewrite the wall-to-wall optimization

problem as one of finding saddle points of a certain unconstrained functional F .
We then describe various manipulations that can be performed on F involving its
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Wall-to-wall optimal transport 889 A34-5

maximization or minimization or both in §§ 2.1 and 2.3. This leads us to a direct
comparison between the background method and the wall-to-wall problem in § 2.4.
In particular, we conjecture that there exists a duality gap between the two problems
in § 2.5 and provide a simple polynomial example to illustrate why one should
expect the problems to be distinct. Additionally, we note the connection to the
Howard–Busse–Malkus problem in § 2.6. All of these considerations aid us in the
development of numerical algorithms for producing candidate optimizers in § 3, and
in the proof of our conditional upper bounds in § 5.

We begin by introducing a new temperature variable θ =T − (1− z) and rewrite the
advection–diffusion equation as

∂tθ + u · ∇θ =1θ + u3. (2.1)

Next, we introduce Lagrange multipliers µ (a positive real number), p(x, z, t) and
ϕ(x, z, t) and the unconstrained functional

F =
〈
u3θ + ϕ (−∂tθ − u · ∇θ +1θ + u3)+µ

(
Pe2
− |∇u|2

)
+∇p · u

〉
, (2.2)

the saddle points of which are candidates for the maximization problem (1.6). The
variables ϕ and p come equipped with their natural boundary conditions. Namely,
we impose periodic and homogeneous boundary conditions in the x and z directions
respectively for ϕ, and the usual implicit boundary conditions for p.

Given initial data, one could search for time-dependent optimal flow fields of
the wall-to-wall problem, but we restrict ourselves to time-independent flow fields
for a number of reasons. First, steady fields are far easier to compute numerically
and time dependence greatly expands the scope and range of our current endeavour.
Second, in the context of simpler models such as the Lorenz equations (with a ‘heat
transport’ functional analogous to the Nusselt number), time dependence was found
to never increase transport (Souza & Doering 2015a,b). Third, preliminary attempts
at computing time-dependent flow fields for the wall-to-wall problem have yielded
essentially time-independent results, suggesting that time dependence may not play
a role in significantly enhancing heat transport. More precisely, taking the initial
condition of the temperature field to be the conductive state 1− z, we found that the
result of the time-dependent optimization was to move the conductive state into a
(locally) optimal steady state, and to hold it there. Finally, for time-independent flows
we are guaranteed that maximizers exist (and that the functional F is differentiable),
while as of now there, is no such assurance for time-dependent flows.

With these considerations in mind, from this point on we focus on the time-
independent functional

F =
〈
u3θ + ϕ (−u · ∇θ +1θ + u3)+µ

(
Pe2
− |∇u|2

)
+∇p · u

〉
, (2.3)

where now the brackets 〈·〉 are understood to give the spatial average only. We
seek the saddle points of (2.3) and for this it will be useful to consider alternative
coordinate systems or ‘constraint manifolds’ that pass through these. Many of the
manipulations introduced below extend naturally to time-dependent and/or stress-free
flow fields.

The first manipulation we perform is to change variables by θ = ξ +η and ϕ= ξ −η,
following the ‘symmetrization method’ described in Tobasco & Doering (2017) and
Doering & Tobasco (2019). Various integrations by parts yield the functional

S =
〈
|∇η|2 + 2ξu ·

(
ẑ−∇η

)
− |∇ξ |2 +µ

(
Pe2
− |∇u|2

)
+∇p · u

〉
. (2.4)
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889 A34-6 A. N. Souza, I. Tobasco and C. R. Doering

The advantage of the new (ξ , η) coordinates lies in exposing the underlying geometry
of the wall-to-wall problem. Indeed, the functional S is convex with respect to η and
concave with respect to u or ξ when the other is held fixed, whereas the functional
F fails to have such properties. It is a bit like choosing to study the polynomial
expression x2

− y2 instead of (x+ y)(x− y).
As a warm up to the manipulations that follow, let us consider this simple

example a bit more and remark on how one might search for the saddle points
of s(x, y)= x2

− y2. Gradient ascent/descent procedures are problematic on their own,
but can be successfully combined with constraints picking out certain curves. For
example, the curve y = 0 passes through the saddle point (0, 0) and the resulting
function s(x, 0) = x2 can be minimized by gradient descent. Thinking procedurally,
this particular constraint curve is found by taking the derivative of s with respect to
y and setting the result equal to zero, i.e. (∂s/∂y)= 2y= 0.

Returning to the functional S , we proceed in §§ 2.1 and 2.2 to derive various
constraint manifolds that pass through its saddle points. We do so by setting the
variations of S with respect to η, ξ , or u equal to zero and relating these to
optimizations of S . Then, in §§ 2.3 and 2.4 we show how the wall-to-wall optimal
transport problem and the background method arise from two such optimization
procedures, thereby producing insights into the relationship between the two.

2.1. Variations with respect to η
We start by taking the variation of S with respect to η and setting it equal to zero.
This results in the Euler–Lagrange equations

1η= u · ∇ξ (2.5)

for η. Substituting this back into S results in the constrained functional

Sη ≡
〈
2u3ξ − |∇∆

−1 (u · ∇ξ) |2 − |∇ξ |2 +µ
(
Pe2
− |∇u|2

)
+∇p · u

〉
. (2.6)

Stated differently, constraining the variable η to satisfy (2.5) preserves the saddles of
(2.4) and yields

Sη =min
η

S. (2.7)

2.2. Variations with respect to ξ and u
Next, we take the variation of S with respect to the variable ξ and set it equal to
zero. This yields

1ξ = u · ∇η− u3 (2.8)

and, after substituting it back into S , we find

Sξ =
〈
|∇η|2 + |∇∆−1

(
u ·
(
ẑ−∇η

))
|
2
+µ

(
Pe2
− |∇u|2

)
+∇p · u

〉
. (2.9)

As before, the same functional is obtained by maximizing S in ξ , i.e.

Sξ =max
ξ

S.

Finally, we take variations over all incompressible flow fields u. This produces the
constrained functional

Su =

〈
|∇η|2 − |∇ξ |2 +µPe2

+
1
µ
|∇S−1

(
ξ ẑ− ξ∇η

)
|
2

〉
, (2.10)
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where S−1
(
ξ ẑ− ξ∇η

)
denotes the unique flow field u solving

µ1u= ξ∇η− ξ ẑ− 1
2∇p, (2.11)

∇ · u= 0. (2.12)

Note that

Su =max
u

S.

These observations serve as a starting point in § 5 for establishing upper bounds on
transport and motivate our choice of numerical methods in § 3. But first, let us see
how the wall-to-wall problem comes out of these manipulations.

2.3. Finding the wall-to-wall problem
Consider the structure of the Sη = minη S and Sξ = maxξ S functionals for a fixed
incompressible velocity field u with enstrophy 〈|∇u|2〉 = Pe2. The functional Sη is
concave in ξ ; likewise Sξ is convex in η. Thus, finding the maximum of the former
with respect to ξ , or the minimum of the latter with respect to η, is equivalent to
enforcing their Euler–Lagrange equations.

The Euler–Lagrange equation for Sη in ξ is

1ξ = u · ∇∆−1 (u · ∇ξ)− u3. (2.13)

Similarly, for Sξ in η we have

1η= u · ∇∆−1 (u · ∇η− u3) . (2.14)

These can be written more concisely as the system

1η= u · ∇ξ, (2.15)
1ξ = u · ∇η− u3, (2.16)

obtained by setting

η=∆−1 (u · ∇ξ) , (2.17)
ξ =∆−1 (u · ∇η− u3) (2.18)

in (2.13) and (2.14). Hence,

Nu{u} − 1=max
ξ

min
η

S =min
η

max
ξ

S (2.19)

for each fixed velocity field u.
The formula (2.19), which first appeared in Tobasco & Doering (2017) and was

further analysed in Doering & Tobasco (2019), is an exact variational characterization
of the Nusselt number. It allows the optimal wall-to-wall transport problem to be
stated succinctly as

max
u

Nu{u} − 1=max
u

max
ξ

min
η

S =max
u

min
η

max
ξ

S, (2.20)
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889 A34-8 A. N. Souza, I. Tobasco and C. R. Doering

where u satisfies the given boundary conditions and intensity constraints. In particular,
we note that gradient ascent may be applied with impunity to the constrained
functional Sη to compute local maxima. This functional can also be used to prove
lower bounds on the Nusselt number without having to solve the advection–diffusion
equation. Indeed, plugging in any ξ admissible in the previous manipulations into Sη
yields the lower bound

Sη{u, ξ}6 Nu{u} − 1. (2.21)

In fact, reinterpreting for the moment angle brackets as space and time averages, we
note that the bound (2.21) holds for time-independent flows as well, an observation
that was exploited in Tobasco & Doering (2017) and Doering & Tobasco (2019)
with ‘branching’ trial functions to prove the scaling max Nu∼Pe2/3 up to logarithmic
corrections as Pe→∞. We return to discuss this asymptotic result in the context of
our numerical results much further below. Next, we consider the relationship between
the wall-to-wall problem and the background method.

2.4. Finding the background method
Consider now the background method which guarantees the absolute upper bound

Nu− 1 6 min
η(x),µ

{
〈|∇η|2〉 +µPe2 if 〈Q[u, ξ ; η]〉6 0 ∀u, ξ ,
∞ otherwise,

(2.22)

where
Q[u, ξ ; η] = 2ξu ·

(
ẑ−∇η

)
− |∇ξ |2 −µ|∇u|2. (2.23)

The reader may not immediately recognize this as the familiar background method
as it has been applied to Rayleigh–Bénard convection (Doering & Constantin 1996).
Nevertheless, equation (2.22) does follow from applying the usual argument to the
wall-to-wall problem. (The resulting bounds carry over to the time-dependent case.)

Let us recall the argument now. Starting with the advection–diffusion equation

u · ∇T =1T (2.24)

and decomposing T as T = ξ + 1− z+ η yields

u · ∇ξ + u · ∇η=1ξ +1η+ u3. (2.25)

Multiplying through by ξ and integrating by parts yields the balance relation

〈ξu · ∇η+ |∇ξ |2 − u3ξ +∇η · ∇ξ〉 = 0. (2.26)

Now, utilizing

〈wT〉 = 〈|∇T|2〉 − 1= 〈|∇ξ |2 + |∇η|2 + 2∇ξ · ∇η〉, (2.27)

we subtract twice (2.26) from (2.27) to conclude that

Nu− 1=
〈
|∇η|2 + 2ξu ·

(
ẑ−∇η

)
− |∇ξ |2

〉
. (2.28)

Introducing a Lagrange multiplier µ/2 for the enstrophy constraint 〈|∇u|2〉 = Pe2

yields

Nu− 1 =
〈
|∇η|2 + 2ξu ·

(
ẑ−∇η

)
− |∇ξ |2

〉
+µ(Pe2

− 〈|∇u|2〉), (2.29)

= 〈|∇η|2〉 +µPe2
+ 〈Q[u, ξ ; η]〉 (2.30)

and upon performing the operations minη maxu,ξ we deduce (2.22).
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2.5. A possible duality gap
We can now discuss the relationship between the background method and the wall-
to-wall optimal transport problem. Combining the definition of S from (2.4) and the
identity (2.29) we see that the background method bound (2.22) can be alternatively
written as

max
u

Nu− 1 6 min
η

max
u,ξ

S. (2.31)

On the left-hand side appears the wall-to-wall optimal transport problem, while on the
right-hand side appears the background method. Note this inequality is consistent with
the results of § 2.3 since in any case

max
u,ξ

min
η

S 6 min
η

max
u,ξ

S (2.32)

regardless of the definition of S . Now, if S were convex in η and jointly concave
in (u, ξ) one would be led on general grounds via convex duality to conjecture that
equality should hold between the left-hand and right-hand sides above, in which case
the wall-to-wall problem and the background method would turn out to be equivalent.
We instead propose that the opposite situation is true and that

max
u

Nu− 1 6=min
η

max
u,ξ

S. (2.33)

A concurrent study, Ding & Kerswell (2019), has provided further evidence that such
an inequality holds. This inequality still allows the possibility for these quantities
to achieve the same asymptotic scaling as Pe → ∞, a situation suggested for
three-dimensional wall-to-wall optimal transport by the recent numerical scaling
max Nu ∼ Pe2/3 reported for a finite range of Pe in Motoki et al. (2018a). It
would also be consistent with the dimension-independent logarithmic lower bound
max Nu > C′Pe2/3/(log Pe)4/3 proved for all large enough Pe in Tobasco & Doering
(2017) and Doering & Tobasco (2019).

Let us illustrate why the inequality in (2.33) may be true by considering how the
previous manipulations operate on the polynomial

p(τ1, τ2, τ3, u, v)= (τ1)
2
+ (τ2)

2
+ (τ3)

2
+ q(u, v, τ1, τ2, τ3), (2.34)

q=
[
u v

] [2(1− τ1 + τ2) τ3
τ3 2(1− τ1 − τ2)

] [
u
v

]
, (2.35)

which we see as analogous to (2.4). The variable τ1 is analogous to the zeroth Fourier
mode of η, while τ2 and τ3 are to the non-zero Fourier modes. (This polynomial
was not derived as a modal truncation of S . That would produce a more complicated
example.) The variables u and v are analogous to ξ and u. The fact is that

max
u,v

min
τ1,τ2,τ3

p= 4/5< min
τ1,τ2,τ3

max
u,v

p= 1, (2.36)

and that the optimizers for the ‘background method’ min max problem are not saddle
points of p. In particular, the critical point equations

τ1 = u2
+ v2, τ2 = v

2
− u2, and τ3 =−uv, (2.37a−c)[

0
0

]
=

[
2(1− τ1 + τ2) τ3

τ3 2(1− τ1 − τ2)

] [
u
v

]
, (2.38)

fail to be satisfied by solutions of the min max problem.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.42


889 A34-10 A. N. Souza, I. Tobasco and C. R. Doering

To see why this is the case, consider the background method procedure wherein
the maximum occurs first. If any of the eigenvalues of (2.35) are positive then the
maximum over u and v yields infinity; thus, we must calculate the eigenvalues of
(2.35) to see when this occurs. For fixed (τ1, τ2, τ3), the eigenvalues of the matrix in
(2.35) are λ = 2(1 − τ1) ±

√
4(τ2)2 + (τ3)2. The only way these eigenvalues are non-

positive is if 2(1− τ1)+
√

4(τ2)2 + (τ3)2 6 0, or equivalently 2τ1 > 2+
√

4(τ2)2 + (τ3)2.
Hence,

max
u,v

p(τ1, τ2, τ3, u, v)=

{
(τ1)

2
+ (τ2)

2
+ (τ3)

2 if 2τ1 > 2+
√

4(τ2)2 + (τ3)2,

∞ otherwise.
(2.39)

It follows immediately that min max p= 1, and that the minimizer satisfies τ1= 1 and
τ2 = τ3 = 0; however, such τ1, τ2 and τ3 cannot be a saddle point of p: if τ2 = τ3 = 0
then from (2.37) we see that u2

= v2 and uv = 0 so that u = v = 0, but then the τ1
equation cannot be satisfied since τ1 = 1 6= u2

+ v2.
Proceeding in the reverse order we find that

min
τ1,τ2,τ3

p=−(u2
+ v2)2 − (u2

− v2)2 − (uv)2 + 2(u2
+ v2). (2.40)

The minimizing τ satisfy

τ1 = u2
+ v2, τ2 = v

2
− u2, and τ3 =−uv. (2.41a−c)

The maximum over u, v is given by u=±
√

2/5 and v=±
√

2/5. Hence, max min p=
4/5.

While in this example the background method procedure (maximum followed by
minimum) yields results that are incompatible with the saddle points of (2.34), the
wall-to-wall procedure (minimum followed by maximum) does produce saddle points.
Returning to the actual wall-to-wall optimal transport problem, we note that the
optimal flow fields reported in § 4 exhibit non-trivial non-zero Fourier modes for
the variable η, whereas in the background method optimizers must satisfy η = η(z).
Indeed, if η satisfies the spectral stability constraint 〈Q〉6 0 then so does its periodic
average η in x, while by Jensen’s inequality 〈|(d/dz)η|2〉 6 〈|∇η|2〉 with equality if
and only if η= η. These observations strongly suggest that the conjectured gap (2.33)
between the wall-to-wall problem and the background method should hold and, in
particular, that the spectral stability constraint should fail to be satisfied by the true
saddle points of S .

2.6. Comparison with the Howard–Busse–Malkus problem
We would be remiss if we did not additionally state the connection of the previous
discussions on the wall-to-wall and background method approach with the classic
Howard–Busse–Malkus approach put forth in Howard (1963). To see the connection
between these, start with S and restrict attention to incompressible flows ∇ · u = 0
with enstrophy 〈|∇u|2〉=Pe2 and functions η(z). At this point, it is useful to introduce
notation for the horizontal average of a function,

f ≡
1
Γ

∫ Γ

0
f (x, z) dx. (2.42)
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Computing the minimum of S with respect to η(z) yields the optimality condition

d2

dz2
η= u · ∇ξ =

d
dz

u3ξ (2.43)

whose solution is

η(z)=
∫ z

0
u3ξ(z′) dz′ − z

∫ 1

0
u3ξ(z′) dz′ =

∫ z

0
u3ξ(z′) dz′ − z〈u3ξ〉, (2.44)

d
dz
η= u3ξ(z)− 〈u3ξ〉. (2.45)

Employing this relation in S yields

min
η(z)

S =
〈

2u3ξ −
(
u3ξ − 〈u3ξ〉

)2
− |∇ξ |2

〉
. (2.46)

Making the change of variables ξ = ασ for a soon to be determined scalar α
transforms this to

min
η(z)

S = α 〈2u3σ 〉 − α
2
〈
(u3σ + 〈u3σ 〉)

2
+ |∇σ |2

〉
, (2.47)

a quadratic function of α. Maximizing with respect to α determines the optimal choice

α∗ =
〈u3σ 〉〈

(u3σ − 〈u3σ 〉)
2
+ |∇σ |2

〉 , (2.48)

utilizing α∗ in the above and taking u= Pe(v/
√
〈|∇v|2〉) results in the multiplicative

form of the functional

M[σ , v, Pe] =
(〈v3σ 〉)

2

Pe−2
〈|∇σ |2〉〈|∇v|2〉 + 〈(v3σ − 〈v3σ 〉)

2
〉
, (2.49)

exactly as in Howard (1963) under the appropriate retranscriptions. The functional in
(2.49) is homogeneous with respect to σ and v, i.e. M[λσ , λv, Pe] =M[σ , v, Pe].
It has in the past served as a starting point for the analysis of maximal heat
transport, in particular leading in Howard (1963) to bounds on transport under
the author’s assumptions of homogeneity and statistical similarity. The connection
of this functional to the background method has been pointed out before (Kerswell
1998).

However, we point out now that the resulting bounds on transport can be improved
beyond those obtained using (2.49) due to the variational representation (2.19) of
the wall-to-wall problem. After a similar series of manipulations utilizing all possible
η(x, z) instead of functions of z alone, we deduce the improved formula

Nu− 1=max
σ

M̃[σ , v; Pe], (2.50)

where

M̃[σ , v; Pe] =
(〈v3σ 〉)

2

Pe−2
〈|∇σ |2〉〈|∇v|2〉 + 〈

∣∣∇∆−1 (v · ∇σ)
∣∣2〉 . (2.51)
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Stated succinctly, the Howard–Busse–Malkus problem maximizes (2.49) and the wall-
to-wall problem maximizes (2.51). The crucial difference between (2.49) and (2.51)
lies in the fact that

〈|∇∆−1(v · ∇σ)|2〉 = 〈(v3σ − 〈v3σ 〉)
2
〉 + non-negative terms (2.52)

since 〈(v3σ − 〈v3σ 〉)
2
〉 is just the zeroth Fourier mode contribution to 〈|∇∆−1(v ·

∇σ)|2〉. Hence,
M̃[σ , v; Pe]6M[σ , v; Pe] (2.53)

for all (σ , v) and the inequality is strict in most cases. Bounds on transport obtained
using the functional M̃ are, therefore, at least as tight as those that have been obtained
using Howard’s functional M. Heuristically, this occurs because the wall-to-wall
problem is more constrained (and hence provides a tighter bound) since it fully
enforces the steady advection–diffusion equation whereas the Howard–Busse–Malkus
problem is less constrained since it only enforces the horizontally averaged version.
We take (2.52) as additional evidence of the conjectured duality gap (2.33)
between the wall-to-wall problem and the background method/Howard–Busse–Malkus
approach.

3. Gradient flow
The theoretical developments of the previous sections give insight into numerical

methods for computing the saddle points of the functionals F in (2.3) and S in (2.4).
In this section, we exploit their structure to derive time-stepping methods for solving
the Euler–Lagrange equations. An advantage of the approach adopted here is that it
is only necessary to have a Poisson or Stokes solver to compute candidate optimizers
to the wall-to-wall problem.

The Euler–Lagrange equations for the wall-to-wall problem are of the form

0= f (x). (3.1)

To solve this numerically, we introduce a time derivative on the left-hand side,

ẋ= f (x), (3.2)

transforming (3.1) into a dynamical system where every local maximum is an
attracting fixed point. When applied to the functional Sη = minη S from (2.6) this
yields its local maximizers, thereby producing saddle points for S .

Composing (3.1) with a locally invertible function such that P(0) = 0 and then
introducing a time derivative defines an alternate system ẋ=P(f (x)). The danger and
boon of choosing such a preconditioner is that the stability of a fixed point may
change: we could be computing local maxima, minima or saddles of our original
function f in (3.1). For example, Newton’s method may be viewed as choosing the
negative inverse Jacobian J−1(x) of f , P(f (x))=−J−1(x)f (x), along with a choice of
optimal step size (1t= 1) upon temporal discretization. With regards to the functional
F , we will take the preconditioner approach implemented in a way that is similar to
the algorithm in Wen et al. (2015). With regards to the Euler–Lagrange equations of
(2.2) and (2.4) we ultimately solve

0=
δF
δϕ
=1θ − u · ∇θ + u3, (3.3)
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0=
δF
δθ
=1ϕ + u · ∇ϕ + u3, (3.4)

0=
δF
δu
= 2µ1u− ϕ∇θ + (θ + ϕ)ẑ−∇p, (3.5)

0=
δF
δp
=∇ · u, (3.6)

0=
δF
δµ
= 〈Pe2

− |∇u|2〉 (3.7)

or equivalently

0=
1
2
δS
δξ
=1ξ − u · ∇η+ u3, (3.8)

0=
1
2
δS
δη
=−1η+ u · ∇ξ, (3.9)

0=
1
2
δS
δu
=µ1u− ξ∇η+ ξ ẑ+

1
2
∇p, (3.10)

0=
δS
δp
=∇ · u, (3.11)

0=
δS
δµ
= 〈Pe2

− |∇u|2〉. (3.12)

3.1. Gradient ascent methods
Here, we outline various methods for solving the Euler–Lagrange equations of the
wall-to-wall problem described above. One method is to evolve

0=
δF
δϕ
, 0=

δF
δθ
, ∂τu=

δF
δu
, 0=

δF
δp
, and ∂τµ=

δF
δµ

(3.13a−e)

forward in time. This strictly enforces the advection–diffusion equation and its adjoint
at every time step, utilizing δF/δu to compute corrections to the flow field. This
approach was taken in Motoki et al. (2018b), and the rate limiting step is the solution
of the advection–diffusion equation and its adjoint. In the present work, we take a
different approach and compute numerical solutions to (3.3) and (3.8) utilizing two
different algorithms.

The first of our algorithms involves a time-stepping procedure of the form

∂τθ =
δF
δϕ
, ∂τϕ =

δF
δθ
, ∂τu=

δF
δu
, 0=

δF
δp
, and ∂τµ=

δF
δµ
. (3.14a−e)

This procedure may be understood as follows. For fixed u, the equations for ∂τθ and
∂τϕ evolve towards the steady state solutions δF/δϕ= 0 and δF/δθ = 0, hence, these
evolutions are a relaxation of fully solving the Euler–Lagrange equations for θ and ϕ.
The equation for µ guarantees that we flow towards a flow field with the desired
enstrophy Pe. The last condition (for a fixed θ and ϕ) evolves to a solution of the
optimality condition. We enforce incompressibility at every time step and evolve all
fields at once.
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There is an alternative description of this algorithm in terms of S . Focusing on the
θ and ϕ equations, we see that evolving

∂τθ =
δF
δϕ

and ∂τϕ =
δF
δθ

(3.15a,b)

is equivalent to evolving

∂τξ =
δS
δξ

and − ∂τη=
δS
δη

(3.16a,b)

after taking sums and differences (making use of θ = ξ + η and ϕ = ξ − η) and
rescaling time. Thus, our time-stepping procedure for θ and ϕ is equivalent to
simultaneously applying gradient ascent for the concave variable ξ and gradient
descent for the convex variable η in the S functional. This is similar to the
philosophy of Wen et al. (2015). In fact, the only modification required to compute
two-dimensional no-slip background fields would be to project the η variable to the
zeroth Fourier mode at each time step, by taking the x average of the right-hand side
of the η equation.

The second time-stepping method involves computing the saddles of S via

∂τξ =
δF
δξ
, 0=

δF
δη
, ∂τu=

δF
δu
, and 0=

δF
δp
, (3.17a−d)

while fixing µ. The resulting enstrophy depends implicitly on µ. Enforcing δF/δη= 0
at each time step yields gradient ascent for the local optima of (2.6), an unconstrained
variational problem. The reason why this algorithm is efficient is due to the many
existing algorithms for quick inversion of the Laplacian and the Helmholtz operator.

We found numerically that both (3.14) and (3.17) yield the same result. We also
implemented various other ascent procedures with different preconditioners. For
example, we evolved equations of the form

−1∂τθ =
δF
δϕ
, −1∂τϕ =

δF
δθ
, ∂τu=

δF
δu
, 0=

δF
δp
, and ∂τµ=

δF
δµ

(3.18a−e)
forward in time, as well as

−1∂τθ =
δF
δϕ
, −1∂τϕ =

δF
δθ
, −1∂τu=

δF
δu
, 0=

δF
δp
, and ∂τµ=

δF
δµ
,

(3.19a−e)
evolving different components on different time scales. Amongst all of our results, the
ones presented in § 4 maximize Nu for a given Pe.

3.2. Temporal discretization
Each of the gradient ascent procedures described in § 3 are of the form

ẋ=Lx+N (x)+ f , (3.20)

where x is the state vector, L is an ‘easily’ invertible linear operator, N is a nonlinear
operator and f is a forcing function. We follow Viswanath & Tobasco (2013) and
consider linear multi-step schemes as follows:

1
1τ

(
γ xn+1

+

s−1∑
j=0

ajxn−j

)
=

s−1∑
j=0

bjN (xn−j)+Lxn+1
+ f n+1, (3.21)
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where s is the order of the time-stepping scheme, ai and bi are parameters and 1t is
the time-step size. The parameters values for orders s= 1, 2 and 3 are

s= 1, γ = 1, a0 =−1, b0 = 1, (3.22a−d)

s= 2, γ = 3/2, a0 =−2, a1 = 1/2, b0 = 2, b1 =−1, (3.23a−f )

s= 3, γ = 11/6, a0=−3, a1= 3/2, a2=−1/3, b0= 3, b1=−3, b2= 1.
(3.24a−h)

For example, with s= 1 and the advection–diffusion equation,

∂τθ =−u · ∇θ +1θ + u3 (3.25)

we use (
∆−

1
1τ

I
)
θ n+1
= un
· ∇θ n

−wn
−

1
1τ

θ n. (3.26)

Thus for each time step we must solve a modified Poisson’s equation of the form

(∆− cI) θ = f , (3.27)

where c > 0 and we have made the transcriptions

θ n+1
7→ θ,

1
1τ
7→ c, and un

· ∇θ n
−wn

−
1
1t
θ n
7→ f . (3.28a−c)

Analogous discretizations are used for ϕ, η and ξ . For updating the optimality
condition with s= 1 one option is to use(

µ∆−
1
1τ

I
)

un+1
=− (ϕn

+ θ n) ê3 + ϕ
n
∇θ n
−

1
1τ

un
+∇pn+1, (3.29)

∇ · un+1
= 0. (3.30)

Each time step involves solving a modified Stokes equation

(∆− cI) u= f +∇p, (3.31)
∇ · u= 0, (3.32)

where c > 0 and we have made the transcriptions

un+1
7→ u, pn+1

7→ p,
1
1τ
7→ c, and (ϕn

+ θ n) ê3 + ϕ
n
∇θ n
−

1
1τ

un
7→ f .

(3.33a−d)

We solve these boundary value problems by utilizing a pseudo-spectral method,
where the wall-bounded direction is represented by Chebyshev polynomials and the
periodic directions are represented by Fourier series; however, our use of Chebyshev
polynomials utilizes spectral integration in the same way as Viswanath (2015).
The Stokes equation (3.31) was solved utilizing the Kleiser–Schumann algorithm
(Kleiser & Schumann 1980). See appendix A for details regarding implementation. A
theoretical discussion of the approach is in Viswanath (2015). Let us highlight some
of the benefits of spectral integration here:
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(i) Memory efficiency: the total memory occupied is linear in the number of points
required to describe the state variable u.

(ii) Speed: solving the linear equations involves only tridiagonal matrices which are
put into lower–upper form at the beginning of the gradient ascent procedure.

(iii) Discretization accuracy: everything is represented using Fourier and Chebyshev
modes, allowing for spectral accuracy.

(iv) Machine accuracy: utilizing spectral integration in factored form (see appendix A)
allows us to avoid taking wall-bounded derivatives and only take derivatives in
periodic direction, without passing to the nodal domain.

At this point, all the pieces are in place to compute flow fields maximizing heat
transfer. By utilizing gradient ascent or other time-marching schemes of § 3.1, it is
possible to adapt existing Rayleigh–Bénard codes to find steady maximizing flow
fields and compare their thermal transfer to that of natural flows.

4. Two-dimensional computations

For every decade of Péclet number we computed approximately 20 logarithmically
spaced solutions to the Euler–Lagrange equations (3.3) and (3.8). We then performed
numerical differentiation of log Nu and log Γ with respect to log Pe to examine
(local) scaling relations. The largest enstrophy satisfied Pe ≈ 105, with an x Fourier,
z Chebyshev grid size of 512× 1025. The time-stepping code slowed substantially at
larger Pe.

In addition to numerical continuation from small Péclet number (Pe≈ 0), we started
at different points in function space in an attempt to find more optimal solutions. We
utilized solutions to other related variational problems as ‘educated guesses’ for new
flows at which we started our gradient ascent procedure. We computed solutions to the
Euler–Lagrange equations for fixed aspect ratio Γ as well as optimizing over all Γ .
The solutions presented here achieved the largest transport.

Figure 1 shows visualizations of the temperature field and the streamfunction with
no-slip boundary conditions. In the low Péclet number regime, the solutions are
convection cells while at higher Pe ‘recirculation zones’ develop on the bottom and
top boundaries. Additionally, the optimal aspect ratio of a cell size shrinks with ever
increasing Pe. For a fixed aspect ratio, optimal solutions contain a multiplicity of
convection cells. One of the benefits of our numerical approach is the automatic
computation of the optimal domain size with little additional overhead.

In figure 2 we report the Nu-Pe and Γ -Pe relations and local scaling relations
for the best known optimizers (for no-slip boundary conditions). After leaving
the ‘linear’ regime where Nu ∼ Pe2 we enter a ‘fully nonlinear’ regime where
Nu ∼ Pe0.54. In view of the results of Tobasco & Doering (2017) and Doering &
Tobasco (2019) this scaling cannot persist for the globally maximal transport at
sufficiently large Pe. Nevertheless, it does appear to be optimal for the computed
range of Péclet number in two spatial dimensions. (The Nu∼ Pe0.54 optimal transport
scaling in this regime was first reported in Souza (2016) and thereafter confirmed by
independent computation by Motoki et al. (2018b) and Ding & Kerswell (2019).)

In the linear regime there is little change in the optimal aspect ratio, i.e. the optimal
Γ ≈ constant while in the fully nonlinear regime a non-trivial Γ ∼ Pe−0.37 scaling
emerges. Interestingly, the local exponent exhibits a somewhat oscillatory relaxation
rather than a perhaps more expected monotonic convergence.
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FIGURE 1. Optimal no-slip solutions for different enstrophy budgets in a single cell. The
black contour lines are the streamlines and the colours represent the temperature field.
From left to right, top to bottom the Péclet numbers are 4.0 × 10−1, 4.0 × 100, 4.0 ×
101, 4.0× 102, 4.0× 103, 4.0× 104. The domain size in the horizontal direction x shrinks
as the enstrophy budget increases. (a) Pe= 4× 10−1, (b) Pe= 4× 100, (c) Pe= 4× 101,
(d) Pe= 4× 102, (e) Pe= 4× 103, ( f ) Pe= 4× 104.

4.1. Singular value decomposition
Given the structure of the solutions depicted in figure 1 one may wonder if the
corresponding fields are to first approximation separable. With regards to the
streamfunction ψ defined by (−∂zψ, ∂xψ)= (u1, u3), this would mean

ψ(x, z)≈Ψ (z)φ(x). (4.1)

We investigate this possibility by minimizing the functional

A[Ψ , φ] =
1
Γ

∫ Γ

0

∫ 1

0
(ψ(x, z)−Ψ (z)φ(x))2 dx dz (4.2)

subject to appropriate constraints on Ψ (z) and φ(x), and similarly for other fields such
as η or ξ . (For example, φ(x) should be periodic and Ψ (z) should satisfy no-slip
boundary conditions.) If the minimal value is sufficiently small, then we may say that
the flow fields are nearly separable.

Upon discretization,

A[Ψ , φ] ≈
∑

i,j

(ψij −Ψjφi)
2wij, (4.3)

ψij =ψ(xi, zj), φi = φ(xi), and Ψj =Ψ (zj), (4.4a−c)

where xi=Γ i/n for i= 0, . . . , n− 1 and zj=
1
2(1+ cos(πj/m)) for j= 0, . . . ,m are the

collocation points of the Fourier and Chebyshev discretizations and wij are weights for
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FIGURE 2. Computed optimal Nusselt number (Nu) and aspect ratio (Γ ) as a function of
the enstrophy budget (Pe), for no-slip boundary conditions. (a) Log–log plot of Pe versus
Nu-1. (b) Log–log plot of Pe versus Γ . Panels (c) and (d) show slopes of (a) and (b),
respectively. The last slope for the (c) plot is 0.544 and the last slope for the (d) plot is
−0.371. The largest computed Pe= 2.5× 105 corresponding to µ= 1.4× 10−9.

approximating the integral by a discrete sum. Spectral accuracy for the approximation
(4.3) was obtained by setting

wij =1xi1zj with 1xi =
1
n

and 1zj =
1
2

sin(aj)
1
m

m−1∑
`=1

sin(`aj)
(1− cos(`π))

`
,

(4.5a−c)
where aj = πj/m for j = 0, . . . , m, see Boyd (2001). Since we are dealing with the
average value of the integral there is no factor of Γ in 1xi.

In the discrete problem corresponding to (4.3) we minimized the weighted
Frobenius norm of the matrix ψij with respect to an outer product decomposition,
hence, for wij = 1, the solution to the discrete problem is to take Ψ and φ to be
equal to the largest singular vectors of the matrix ψij multiplied by the largest singular
value. For wij 6= 1, we rescaled the problem taking ψ ′ij=ψij

√wij and found the largest
singular vectors of ψ ′ij. The difference between uniform and non-uniform wij may be
interpreted as minimizing with respect to different weighted energy norms and, in
our numerical experiments, we found little qualitative difference between utilizing
one over the other. All singular value decompositions reported here were computed
using wij = 1.

Figure 3 shows the first three modes in the singular value decomposition of the
streamfunction ψ . Figure 5 shows the same for the ξ field and the vertical velocity
field u3. The modes with smaller singular values may be viewed as a preliminary
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FIGURE 3. The streamfunction ψ and its first three modes at Pe≈ 2.4× 104. The modes
are ordered left to right by the magnitude of their singular values starting with the largest.
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FIGURE 4. The quantity |N1−N2|/N2× 100 as a function of Pe. The value remains below
1% throughout the range of numerically computed values of Pe.

manifestation of a branching-like pattern, perhaps similar to the ones constructed
in Tobasco & Doering (2017) and Doering & Tobasco (2019). The structures
corresponding to the largest singular value are the direct analogue for the wall-to-wall
problem of the single wavenumber solutions for the Howard–Busse–Malkus problem
produced in Howard (1963).

As it turns out, these dominant structures carry ≈ 99% of the overall heat transport
in the computed range of Pe. More precisely, writing

ψ(x, z)≈Ψ (z)φ(1)(x), (4.6)
ξ(x, z)≈Ξ(z)∂xφ

(2)(x), (4.7)
N1 = 〈(∂xψ)ξ〉, (4.8)

N2 = 〈Ψ (∂xφ
(1))Ξ∂xφ

(2)
〉, (4.9)

our solutions achieved (N1 − N2)/N1 6 0.01 uniformly over all computed Péclet
numbers, see figure 4. (This error was even less for smaller Péclet numbers.) The
fact that (4.8) is equal to Nu − 1 for solutions to the wall-to-wall problem follows
from the Euler–Lagrange equation (3.8).

Figure 6 depicts the first singular vectors for ξ and u3. While in the Howard–Busse–
Malkus problem the corresponding x dependence is perfectly sinusoidal, for the wall-
to-wall problem the x dependences of the first singular vectors resemble Jacobi elliptic
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FIGURE 5. The field ξ = θ + ϕ (top row), the vertical velocity u3 (bottom row) and their
first three modes at Pe≈ 2.4× 104. The outer products are ordered with respect to their
singular values.
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FIGURE 6. The first singular vectors in the singular value decomposition of the ξ field
(a,b) and the vertical velocity u3 (c,d). The respective products of these singular vectors
yields the first approximations in figure 5. The Péclet number ≈ 2.4× 104.
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functions. The similarity between ∂xφ
(1) and ∂xφ

(2) in figure 6 motivates the ‘separable
ansatz’

u1(x, z)=−Ψ ′(z)φ(x), (4.10)
u3(x, z)=Ψ (z)φ′(x), (4.11)
ξ(x, z)=Ξ(z)φ′(x), (4.12)

which we consider further in § 5.1 below. There, we derive conditional upper bounds
extending the single wavenumber analysis from Howard (1963) to the wall-to-wall
problem. We will see that the functional from § 2.6 can be bounded from above by
Pe6/11

=Pe0.54 amongst all separable ansatzes, in accord with the numerically computed
Nu∼ Pe0.54 scaling.

5. Conditional upper bound
As discussed in the previous section, the flow and temperature fields found to

maximize heat transport are nearly separable and achieve the scaling Nu ∼ Pe0.54

within the range of computed Pe. Furthermore, most of the heat transport scaling
was attained via a separable approximation. We now make use of the theoretical
developments from § 2 to prove the upper bound Nu − 1 6 CPe0.54 under the
assumption of a perfectly separable ansatz. We do this by rederiving the Howard
functional from Howard (1963) (as in § 2.6) and assuming a separable ansatz at the
outset. It should be emphasized that the arguments given below do not yield a fully
ansatz-free explanation of the observed numerical scaling from the previous section
since it must still be proved that all solutions in the range Pe . 105 are indeed
separable or, what is more likely the case, that their non-separable part contributes
negligibly to transport.

5.1. Upper bounds within a separable ansatz
To obtain upper bounds on the Nusselt number within a separable ansatz, we start
by recalling that the Howard–Busse–Malkus problem bounds the wall-to-wall problem
from above. Indeed, as was shown in §§ 2.3 and 2.6,

max
u

Nu− 1=max
u,ξ

min
η

S =max
v,σ

M̃6 max
v,σ

M (5.1)

since the minimum is only made smaller upon enlarging the class of admissible
functions. Thus, we are led to consider the functional

M[σ , v, Pe] =
(〈v3σ 〉)

2

Pe−2
〈|∇σ |2〉〈|∇v|2〉 + 〈(v3σ − 〈v3σ 〉)

2
〉

(5.2)

from § 2.6, while also restricting ourselves to the separable ansatz

u1(x, z)=−Ψ ′(z)φ(x), (5.3)
u3(x, z)=Ψ (z)φ′(x), (5.4)
ξ(x, z)=Ξ(z)φ′(x), (5.5)

where ′ denotes an ordinary derivative. Note, while the argument that follows is
similar to those of Howard (1963) and Doering & Constantin (1996), it is more
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general in scope since here we allow φ(x) to be any periodic function rather than
some well-chosen Fourier mode. Our choice to study this more general case is
motivated by the previous discussion of numerical results, which showed how, in
the wall-to-wall problem, non-sinusoidal φ(x) arise. Our goal now is to bound the
functional M from above under the assumptions of separability (5.3)–(5.5). Again,
we note that this does not provide the unconditional upper bound on M required
to deduce bounds on max Nu according to (5.1). What we lack is a proof that
(5.3)–(5.5) are indeed valid assumptions over the given range of Pe. Nevertheless, we
proceed.

Note that the velocity field is incompressible, and we normalize φ by requiring

(φ′)2 = 1. (5.6)

Given the homogeneity of the functional we may impose that

〈u3ξ〉 =

∫ 1

0
Ψ (z)Ξ(z) dz= 1. (5.7)

Given these, we seek to bound the denominator of (5.2) from below so as to produce
the desired upper bound.

Note the identities

〈u3ξ〉 =

∫ 1

0
Ψ (z)Ξ(z) dz, (5.8)

〈|∇u|2〉 =
∫ 1

0

(
φ2(Ψ ′′)2 + 2(Ψ ′)2 + (φ′′)2(Ψ )2

)
dz, (5.9)

〈|∇ξ |2〉 =

∫ 1

0
(Ξ ′)2 + (φ′′)2Ξ 2 dz, (5.10)

〈(u3ξ − 〈u3ξ〉)
2
〉 =

∫ 1

0
(ΨΞ − 1)2 dz, (5.11)

where for convenience we have abbreviated
∫ 1

0 f (z) dz as
∫

f . Using these, we obtain
the lower bound

〈|∇u|2〉〈|∇ξ |2〉 > φ2

∫
(Ψ ′′)2

∫
(Ξ ′)2 + (φ′′)2

∫
Ψ 2
∫
(Ξ ′)2 + φ2

∫
(Ψ ′′)2(φ′′)2

∫
Ξ 2

+

(
(φ′′)2

)2
∫
Ψ 2
∫
Ξ 2 (5.12)

> φ2

∫
(Ψ ′′)2

∫
(Ξ ′)2 + 2

√
(φ′′)2

∫
Ψ 2

∫
(Ξ ′)2φ2

∫
(Ψ ′′)2(φ′′)2

∫
Ξ 2

+

(
(φ′′)2

)2
∫
Ψ 2
∫
Ξ 2, (5.13)

by an elementary Young’s inequality. The interpolation inequality[
(φ′′)2

] [
φ2
]
>
(
φφ′′

)2
=

(
(φ′)2

)2
= 1 (5.14)
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follows by combining Cauchy–Schwarz, integration by parts, and the normalization
(5.6). Similarly, ∫

Ξ 2
∫
Ψ 2 > 1, (5.15)

by Cauchy–Schwarz and the net flux constraint (5.7).
Proceeding, we deduce from (5.14) and (5.15) that

〈|∇u|2〉〈|∇ξ |2〉 >
1

(φ′′)2

∫
(Ψ ′′)2

∫
(Ξ ′)2 + 2

√
(φ′′)2

∫
(Ψ ′′)2

∫
(Ξ ′)2 + ((φ′′)2)2

(5.16)

> inf
a>0

{
1
a2

∫
(Ψ ′′)2

∫
(Ξ ′)2 + a

√
4
∫
(Ψ ′′)2

∫
(Ξ ′)2 + a4

}
(5.17)

=
9

24/3

(∫
(Ψ ′′)2

∫
(Ξ ′)2

)2/3

. (5.18)

Utilizing Howard’s lemma (the estimate referred to as such in Doering & Constantin
(1996), equation (6.26)), we can bound the remaining term by∫

(ΨΞ − 1)2 >
16
15

(
3
2

)1/2 (∫
(Ψ ′′)2

∫
(Ξ ′)2

)−1/4

. (5.19)

Taking δ =
(∫
(Ψ ′′)2

∫
(Ξ ′)2

)−1/4, we see that the denominator of the functional M
given in (5.2) – in the separable ansatz – is bounded below by

16
15

(
3
2

)1/2

δ +
9Pe−2

24/3

1
δ8/3

>

(
16
15

(
3
2

)1/2
)8/11 (

9Pe−2

24/3

)3/11
((

3
8

)−3/11

+

(
3
8

)8/11
)

(5.20)
after minimizing over δ.

Thus, M is bounded from above by a constant multiple of Pe6/11
= Pe0.54 in the

separable ansatz (5.3)–(5.5), in accord with the numerically computed transport scaling
of Pe0.54. While this is suggestive of the bound Nu− 16 0.324Pe6/11 (roughly a factor
of two larger than the numerical prefactor ≈ 0.15), it remains to be shown that the
separable ansatz holds up to terms negligible in their transport for the given range
of Pe.

6. Summary and conclusions
We developed and applied time-stepping methods for solving the wall-to-wall

problem for steady flows. Along the way we developed theoretical tools illuminating
connections between the wall-to-wall problem and both the background method of
Doering & Constantin (1996) and Howard’s classic formulation of heat transport
bounds for Rayleigh–Bénard convection from Howard (1963). We computed
optimal steady two-dimensional flow fields with no-slip boundary conditions whose
heat transport scaling is Nu ∼ Pe0.54 for Péclet numbers between 103 and 105.
Upon examining these two-dimensional flows, we computed their singular value
decomposition, revealing concentration onto one dominant mode. This motivated
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us to consider the consequences of the additional assumption that the flow fields
are separable. Within such an ansatz, we proved a conditional upper bound scaling
as Pe6/11 corresponding to the Ra3/8 ‘single wavenumber’ upper bound scaling for
Rayleigh–Bénard with no-slip boundary conditions.

In light of Tobasco & Doering (2017) and Doering & Tobasco (2019), however,
these scalings for the optimal wall-to-wall problem cannot persist for global
optimizers as Pe → ∞. There, it was proved that wall-to-wall optimal transport
in two and three dimensions, obeying no-slip or stress-free boundary conditions,
satisfies max Nu > C′Pe2/3/(log Pe)4/3 within logarithms of the a priori upper bound
Nu 6 C Pe2/3. Curiously, this lower bound coincides to a degree with the numerical
results in the range of Péclet numbers explored: logarithmic differentiation yields

d log(Nu− 1)
d log Pe

≈
2
3
−

4
3

1
log Pe

≈ 0.55 at Pe= 105, (6.1)

not far from the numerically computed Nu∼ Pe0.54 result. Although at first we found
no direct numerical evidence for the branching patterns constructed in Tobasco &
Doering (2017) and Doering & Tobasco (2019), a singular value decomposition
revealed branching in its inception. We wonder exactly how large Pe must be
for the higher modes to play a significant role in optimizing heat transport in a
two-dimensional fluid layer.

The three-dimensional computations reported in Motoki et al. (2018a) show
a stark difference in flow structures and transport scaling as compared to the
two-dimensional flows for both stress-free boundaries from Hassanzadeh et al.
(2014) and no-slip boundaries from § 4 of the present paper (see also Motoki et al.
(2018b)). Three-dimensional versions of branching appear to achieve the optimal
scaling Nu ∼ Pe2/3 already for Pe ∈ [103, 104

] with a prefactor within 10% of the
background upper bound computations from Plasting & Kerswell (2003). We wonder
if this 10% difference is a manifestation of our proposed duality gap between the
wall-to-wall problem and the background method bounds. In any case, the evidence
is that optimal flows take advantage of the presence of a third spatial dimension to
maximize thermal transport.

We conclude with a list of five fundamental questions remaining for the optimal
wall-to-wall transport problem:

(i) Are steady flows optimal?
(ii) Is it possible to prove the a priori upper bound Nu 6 CPe2/3/ log(Pe)4/3 for two-

dimensional flows as Pe→∞, and does the upper bound Nu 6 CPe6/11 hold for
moderate Pe instead?

(iii) Do there exist three-dimensional flow fields achieving Nu∼ Pe2/3 as Pe→∞?
(iv) What do optimally transporting flows look like in other geometries, such as

cylinders or domains with holes?
(v) Do structural properties of optimal flows resemble those of buoyancy-driven

steady and/or statistically stationary turbulent Rayleigh–Bénard convection?
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Appendix A. Spatial discretization
In what follows we provide details of implementing spectral integration with regards

to solving the Poisson and Stokes equations with respect to our boundary conditions
and domain.

A.1. Spectral methods
Taking the Fourier transform of (3.27) and (3.31) in the horizontal directions leads to
the following set of ordinary differential equations to solve

(D2
− β2

n`)θn` = fn`, (A 1)

and (
D2
− β2

n`

)
un` = f n` +Dpn`ẑ+ ıknpn`x̂+ ıκ`pn`ŷ (A 2)

ıknun` + ıκ`vn` +Dwn` = 0, (A 3)

for n, ` ∈Z, where D the derivative in the vertical direction, and

k2
n`= (kn)

2
+ (κ`)

2, β2
n`= k2

n`+ c, kn=
nπ

Γ1
, κ`=

`π

Γ2
, and ı =

√
−1. (A 4a−e)

The square root denotes the principle branch. Although we could discretize the
spatial coordinates using Chebyshev matrices, we instead use spectral integration.
This method of solving boundary value problems of the form

(D− k)y= f (A 5)

subject to boundary conditions has numerous advantages over the differentiation
matrix approach as in Trefethen (2001). With spectral integration, the operators
that must be inverted have bounded condition numbers and are banded matrices as
opposed to dense matrices with unbounded condition numbers.

Instead of solving for functions on z∈[0,1], it is more convenient to take z∈[−1,1]
and then convert the results back to the original domain. Solutions in the z ∈ [0, 1]
domain – denoted by the subscript 1 as in θ1, u1 – are related to solutions in the z∈
[−1, 1] domain – denoted by the subscript 2 as in θ2, u2 – via the following relations

θ1=
1
2θ2, u1= 2u2, Pe1= 4Pe2, (Nu− 1)1= (Nu− 1)2, µ1=µ2/16. (A 6a−e)

When performing calculations we use the [−1, 1] domain but report results in terms
of the original z ∈ [0, 1] domain.

Computing averages (such as the Nusselt number) can be achieved with spectral
accuracy. As mentioned in Boyd (2001), the trapezoidal rule is spectrally accurate
for periodic functions and for bounded domains there are quadrature weight formulas
both in terms of the Chebyshev nodal and modal values. Furthermore, all products are
computed by taking the inverse transforms, multiplying in real space and converting
back to spectral space, as is common for pseudo-spectral methods.
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A.2. Spectral integration
We have seen that gradient ascent for the wall-to-wall problem reduces to solving
differential equations of the form

(D− k)y= f , (A 7)

where k ∈R and z ∈ [−1, 1]. The differential equation has the solution

y(z)=Cekz
+ e−kz

∫ z

−1
ekxf (x) dx, (A 8)

where C enforces boundary or integral constraints. This reduces the problem to
quadrature and indeed the method that we adopt implicitly constructs the solution in
this manner, as noted in Viswanath (2015).

To solve (A 7) we use a modern form of spectral integration developed by
Viswanath (2015). The general principle is remarkably simple. First compute the
homogeneous solution

(D− k)yh
= 0, (A 9)

and then the particular solution

(D− k)yp
= f , (A 10)

so that the general solution is then a linear combination of the particular and
homogeneous solution

y=Cyh
+ yp, (A 11)

where C is a constant that enforces boundary conditions or integral constraints. This
basic decomposition of the general solution of an ordinary differential equation serves
as the primary building block in the construction of solutions to (3.27) and (3.31).

We now discuss how to construct yh and yp in the domain z ∈ [−1, 1]. First write
y as Chebyshev expansion of the form

y(z)=
y0

2
P0 +

∞∑
n=1

ynPn(z), (A 12)

where Pn(x) n= 0, 1, 2, . . . are the Chebyshev polynomials defined by

Pn(z)= cos(n cos−1(z)). (A 13)

The factor of 1/2 in front of the y0 term is standard and convenient for formulas later
on.

Let Tn(y) denote the nth Chebyshev coefficient of y, e.g.

Tn(y)= yn (A 14)

Tn

(∫
y
)
=

0 for n= 0,
yn−1 − yn+1

2n
for n> 0,

(A 15)

where
∫

y here denotes a particular anti-derivative of y. The coefficients may be
computed by the linear operator

yn =
2
π

∫ 1

−1
y(x)

Pn(x)
√

1− x2
dx. (A 16)
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Instead of working with (A 7) directly we work with the equation in integral form

y− k
∫

y=
∫

f +C, (A 17)

where C is a constant of integration. An important observation is that if f = Dg for
some function g, then we do not need to differentiate g to write it in the form (A 17)
but rather we can directly use

y− k
∫

y= g+C. (A 18)

In other words, we can avoid numerically differentiating g.
Use the relation (A 15) to construct (A 17) as a system of equations for the

Chebyshev coefficients, i.e.

Tn(y)− kTn

(∫
y
)
= Tn

(∫
f
)
+ Tn (C) , (A 19)

⇒

y0 = 2C for n= 0, (A 20)

yn − k
yn−1 − yn+1

2n
=

fn−1 − fn+1

2n
for n> 0. (A 21)

The fn are the Chebyshev coefficients of the forcing function f . Note that any choice
of C yields a particular solution to the problem, but does not enforce the proper
boundary conditions. This is an infinite-dimensional tridiagonal system of equations
for the Chebyshev coefficients of y. In order to be amenable to computation any
such system of equations must be truncated. Thus we assume that the solution y and
forcing function f are well represented by a finite truncation. The use of this finite
representation has additional benefits. The Chebyshev spectral coefficients of y are
related to the nodal values of y evaluated at cos(πj/(N−1)) for j=0,1, . . . ,N−1 via
the fast-cosine transform. This allows us to quickly convert spectral coefficients into
real space, and herein lies one of the many advantages of using a Chebyshev series.

We are now in a position to show how to construct numerical homogeneous and
particular solutions yh and yp. To construct yh we solve the following problem:

(D− k)v =
k
2
, (A 22)

subject to T0(v)= 0. The general solution to (A 22) is

v =Cyh
+ vp, (A 23)

vp
=−1/2, (A 24)

yh(z)= ekz, (A 25)

where vp
= −1/2 is the particular solution. The condition T0(v) = 0 guarantees that

C 6= 0 since

CT0(yh)= T0(v − v
p)= T0(v)− T0(v

p)= 0− (−1)= 1 (A 26)
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and T0(v
h) 6= 0. Thus the homogeneous solution is yh

= v + 1/2. Denoting the
Chebyshev series of v by vn for n= 0, . . . , N − 1, we find v by solving the system
of equations

v0 = vN−1 = 0, (A 27)

vn − k
vn−1 − vn+1

2n
=

fn−1 − fn+1

2n
for 0< n<N − 1. (A 28)

We set the N − 1 Chebyshev coefficient of v and f to zero for convenience. For the
construction of the particular solution yp we solve (A 10) subject to T0(yp)= 0. Thus
we solve the system of equations

v0 = vN−1 = 0, (A 29)

vn − k
vn−1 − vn+1

2n
=

fn−1 − fn+1

2n
for 0< n<N − 1. (A 30)

Now that we have constructed the homogeneous and particular solutions we can
enforce boundary conditions. Given y(a)= b for a∈ [−1, 1] the value of the constant
C is determined,

y(a)=Cyh(a)+ yp(a)⇒C=
b− yp(a)

yh(a)
. (A 31)

Typically, we enforce the boundary conditions at the endpoint z=±1 for which we
have readily available formulas to compute the values of yh and yp in terms of their
Chebyshev coefficients, see Boyd (2001).

We now show how to construct solutions to the second-order equation

(D2
− k2)y= f . (A 32)

For this problem we have two homogeneous solutions and one particular solution, so
that the general solution to this differential equation is of the form

y=C1yh1 +C2yh2 + yp. (A 33)

We solve this as a system of two different equations

(D− k)v = f , (A 34)
(D+ k)y= v. (A 35)

First, we find the particular and homogeneous solution to

(D− k)v = f , (A 36)

as described previously so that we have

v =Cvh1 + vp. (A 37)

Then, we find yh2 and yp by solving

(D+ k)yh2 = yh1, (A 38)
(D+ k)yp

= vp, (A 39)
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subject to T0(yh2)= 0 and T0(yp)= 0 via spectral integration for the particular solution.
Note that yh2 constructed in this manner is linearly independent of yh1 . To enforce
boundary conditions we must now invert a matrix for the coefficients C1 and C2. For
example for boundary condition enforced at the endpoints z=±1 we have[

yh1(−1) yh2(−1)
yh1(1) yh2(1)

] [
C1
C2

]
=

[
y(−1)− yp(−1)

y(1)− yp(1)

]
(A 40)

for the coefficients a and b.
Once we have our solution y, we find derivatives without recourse to differentiation

matrices or Fourier transform methods. Indeed, in the first-order case, i.e. for y that
satisfy

(D− k)y= f , (A 41)

we find the derivative by simply rearranging the equation

Dy= f + ky. (A 42)

Hence, differentiation is obtained by merely summing the forcing function and the
solution multiplied by k. A similar approach can be used for constructing the second
derivatives.

We now have all the pieces to solve the modified Poisson’s equation (3.27). Solving
the modified Stokes equation (3.31) is more complicated and is the subject of the next
section.

A.3. Kleiser–Schumann algorithm
The Kleiser–Schumann algorithm is a method for solving the modified Stokes problem
(3.31), see Kleiser & Schumann (1980), Viswanath & Tobasco (2013). Since the
modified Stokes problem is linear, we solve it wavenumber by wavenumber. From
now on we drop the subscript n` with the understanding that the modified Stokes
problem must be solved for all values of n and ` individually. For now we consider
the k 6= 0 case and discuss how to handle this mode separately at the end.

The single wavenumber problem is to solve

(D2
− β2)u= f − ∇̂p, (A 43)

∇̂ · u= 0. (A 44)

Taking the divergence of the first equation yields the following equation for p:

(D2
− k2)p= ∇̂ · f . (A 45)

As we have seen before, we may write the general solution to this problem as the
sum of two homogeneous terms and a particular solution

p=C1ph1 +C2ph2 + pp. (A 46)

Hence, we may write the equation for u as

(D2
− β2)u= f − ∇̂pp

−C1∇̂ph1 −C2∇̂ph2 . (A 47)
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We split the problem of finding solutions to u into three parts. Let ui for i= 1, 2, 3
be solutions to

(D2
− β2)u1

= ∇̂ph1, (A 48)

(D2
− β2)u2

= ∇̂ph2, (A 49)

(D2
− β2)u3

= f − ∇̂pp, (A 50)

where each ui for i = 1, 2, 3 satisfies the boundary conditions for u. With this we
write u as

u= u3
−C1u1

−C2u2. (A 51)

To find C1 and C2 we use auxiliary conditions derived by enforcing incompressibility
on the boundary.

For no-slip boundary conditions we have ∂zw(z = ±1) = 0 and for stress-free
boundary conditions ∂zzw(z=±1)= 0. That is to say, equation (A 51) applies to each
component hence to the vertical velocity w

w=w3
−C1w1

−C2w2. (A 52)

For example, with no-slip boundary conditions we apply the vertical derivative D to
both sides and solve the following system of equations for C1 and C2:[

Dw1(z= 1) Dw2(z= 1)
Dw1(z=−1) Dw2(z=−1)

] [
C1
C2

]
=

[
Dw3(z= 1)

Dw3(z=−1)

]
. (A 53)

For fixed time-step sizes, the matrices are precomputed and factorized only once.
Furthermore u1 and u2 is precomputed. Hence at each time step we only need to
solve for u3 and the coefficients C1 and C2.

For this problem, the k = 0 case must be handled separately as well. This is due
to the fact that the homogeneous solution for the pressure is of the form ph1 = 1/2
and ph2 = z/2. Letting u1

= (u1, v1, w1), the k = 0 case implies that u1
= 0 for

no-slip boundary conditions and stress-free boundary conditions. For β = 0, one
has (u1, v1, w1) = (D1, D2, 0) in the stress-free case where D1 and D2 are arbitrary
constants. By specifying that (u1, v1) are mean zero we may set these arbitrary
constants to zero. The constant C1 becomes a free parameter that does not affect the
physical flow field u. We may choose this value such that the average of p is zero,
but this is by no means necessary. Now, we must find C2. From incompressibility
and from the boundary conditions we see that Dw = 0 ⇒ w = 0 which implies
C2w2

= w3. (Note that for β = 0 we have w2
= (z2

− 1)/4 and for β 6= 0 we have
w2
= −(1/2β2) + (sinh(β) cosh(βz)/β2 sinh(2β)).) Taking the derivative we find that

Dw3(z ± 1)/Dw2(z ± 1) = C2. This may appear overconstrained, but since we are
guaranteed that that the functions w2 and w3 are proportional to one another, we
could take either conditions to evaluate the constant C2.

Appendix B. Optimality condition for domain size
Prior work (Hassanzadeh et al. 2014) indicates that there seems to be an optimal

domain size in the periodic direction x ∈ [0, Γ ]. The derivative of the functional F
with respect to domain size Γ , is easiest to compute by rewriting F = 〈L〉 with

L= u3θ + ϕu · ∇θ −∇ϕ · ∇θ + ϕu3 +µ
(
Pe2
− |∇u|2

)
+∇p · u. (B 1)
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Differentiating this functional with respect to Γ evaluated on a solution to the Euler–
Lagrange equations yields

δF
δΓ
=−

1
Γ
〈F〉 +

1
Γ

∫ 1

0
Hx dz, (B 2)

−Hx
=−L− ∂xθϕu1 +µ|∂xu|2 − p∂xu+ 2∂xθ∂xφ. (B 3)

The latter part is the spatial Hamiltonian density associated with L. It may seem that
(δF/δΓ ) is a function of x, but the Lagrangian L has no explicit spatial dependence,
hence, the quantity

∫ 1
0 Hx dz is independent of the horizontal variable x. In other words∫ 1

0 Hx dz= 〈Hx
〉. This allows us to simplify the formula and compute

δF
δΓ
=

1
Γ
〈∂xθϕu1 +µ|∂xu|2 − p∂xu+ 2∂xθ∂xφ〉. (B 4)

(If this calculation is unfamiliar to the reader we refer to Souza (2016) but the essence
of the calculation comes from the first exercise of Feynman & Hibbs (1965).)

The optimal domain size condition for S is similar but not exactly the same due to
a redefinition of the pressure term.

We include an aspect ratio flow of the form ∂τΓ = (δF/δΓ ) in addition to the
previous time-stepping procedures. There are subtleties associated with implementing
this flow to make the procedure successful. Empirically, it is found to be useful
to withhold evolution of the aspect ratio until one was ‘close’ to a solution of the
Euler–Lagrange equations. Furthermore, taking a time step in tandem with the other
evolutions seemed prohibitively slow, thus, the evolution is only taken every nth time
step with respect to the other evolutions, where n = 5 works well for our purposes.
The overhead of changing the domain slows down computations by a negligible
amount once these modifications are implemented.
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